Earthquake Hazard Assessment in the Pacific Northwest: Site Response

Thomas L. Pratt
U. S. Geological Survey
School of Oceanography
University of Washington

Earthquakes are inevitable: How do we deal with their effects?

- Design buildings to an appropriate level of safety
- ** Prepare emergency services to respond
- ★ Inform citizens how to prepare and respond

Need to know:

- ** How often are different types of earthquakes likely to occur?
- ★ How strong will the shaking be?
- ** How will the shaking vary across the region?
- ** At what frequencies will the ground shake?

Estimating the ground shaking from earthquakes

- ★ Probabilistic Hazard Maps
 - Peak Ground Acceleration likely in a given time interval
 - Example:
 - 2% chance of 0.25g acceleration being exceeded in a 50-year time span

Earthquake Hazard Analysis ** Plate motions ** GPS ** EQ monitoring (PNSN) ** Geophysics (SHIPS) ** Geology ** LIDAR ** Paleoseismology

Seattle SHIPS (site response)

- ★ 90 seismometers (3-component) recording continuously from Jan 27 to May 24, 2002
- ★ Identical instrumentation with 2 Hz sensors
- ★ Local: magnitude 2.0 to 2.1 or greater visible across array (~every 3 days?)
- ★ Teleseisms: magnitude 7.0 to 7.3 or greater visible across array (~15-20/year)

Nisqually Earthquake ** Effects of surface waves ** Relatively modest ground motions • Maximum PGA of 0.27g ** Non-linear soil response • Amplifications much smaller for strong ground motions (mainshock versus aftershock)

Results from SHIPS/Nisqually

- ★ Seattle Basin characterized by amplifications of 8 to 12 at low frequencies
 (0.3 to 0.8 Hz (3.33 sec to 1.25 sec periods)
- ** At higher frequencies (5 to 10 Hz) the basin causes decreased shaking
- ** Amplifications of 5 could come from resonance in the shallow deposits (<500 m)
- **★** Amplifications from focusing likely <2
- ★ Surface waves within the basin cause amplifications of as much as 16
- ** Non-linear effects come into play at moderate ground accelerations

