

Mw 6.3 Earthquake in Italy

Monday, April 6, 2009 at 01:32 UTC:

According to the Italian officials, more than 50 people died, and 50,000 were left homeless. The epicenter was in L'Aquila (Abruzzo Region), a medieval fortress hill town, where a number of people were trapped under rubble. Source : ANSA : <u>http://www.ansa.it</u>

Damages in L'Aquila (Italy) 7 Km from the epicenter.

Next up

The earthquake cycle

- Steady accumulation of tectonic strain
 Sudden release of strain in earthquakes
- Earthquakes
 - Appearance of fault trace
 - Mechanics
- Seismic waves and earthquake location
- Then more on tectonics of West Coast

The earthquake cycle

Fold

From large-scale motion to earthquakes

- Ductile Smooth motion in space and time
 - Large-scale plate motions are smooth
 - Due to flow in ductile mantle underneath
- Brittle Abrupt and localized rupture when stressed
 - During earthquakes
 - Due to brittle nature of crust

Many solid materials are elastic

- Elasticity property of materials
 - I that deform when a force is applied
 - and return to original shape if the force is removed
 - such as a spring or a rubber band or a rock at low temperatures
 - Not ductile, does not flow
- Elasticity allows sudden earthquating and seismic waves.

Liquids versus Solids

- Liquids flow : viscosity η resists.
- Solids deform: rigidity G resists.
- Maxwell characteristic time $\tau = \eta/G$
 - I η is viscosity and G is elastic springiness
 - τ = 10⁻¹² seconds for water
 - $\tau = 10^6$ years for earth crust
- Time scale of deformation < τ : solid</p>
- Time scale of deformation > τ : liquid
- Examples: silly-putty, salt-water taffy

Elastic Rebound

- A fault remains locked (by friction) while stress slowly accumulates, gradually twisting the rock
- Then it suddenly ruptures in an earthquake, releasing the stored-up stress.
- Energy is released in the form of heat and seismic waves.

Consequences of Elastic Rebound

Elastic Rebound

After 100 years of accumulating strain:

Elastic Rebound

Elastic Rebound

Deformation during the earthquake cycle

Another view

Strain accumulation

- Steady strain rate over many years
- Distributed across zone about 100 km wide
- Only top 20 km build strain in California
 Deeper rocks seem to flow due to higher temp.
- We see strain accumulate with GPSGlobal Positioning System
- If build-up of strain is steady and featureless, there may be no clues of coming quakes

Strike and dip

of a fault plane, a rock layer, or a subducting slab

Strike-slip fault - transform

Strike-slip fault trace

- Deflected stream channels
- Juxtaposed unrelated rock types
- Sag ponds
 - Enclosed depressions
- Shutter ridges
 - Ridges that are truncated

Strike-slip trace diagram

A stream channel offset by the San Andreas fault, Carrizo Plain, central California

Another nearby place

Guatemala again

NOAA web site

Guatemala

1 m offset here

1976

Thrust fault - convergence

Thrust fault trace

- Topographically irregular scarp
 In contrast, strike-slip has straight trace
- Fault plane dips at low angle
- Deeply incised canyons
 - From rapid uplift
- Perched terraces
 - Formed when upper block was lower
- Drag fold on hanging wall of fault
 - Permanent, ductile part of deformation

Thrust fault trace diagram

Thrust fault in Alps

Uplifted terraces at Wairarapa coast from quakes in 1855, 1460, ...

Meckering earthquake

1968 thrusting event, 30 km long rupture. Shadow shows scarp. Middle of Australia *Photo by Bruce Bolt*

Thrust fault scarp, 1980, El Asnam, Algeria

NOAA web site

More on Italian earthquake

- 200 fatalities
- M5.6 Aftershock yesterday
- Claim of prediction based on excess radon
 - 6-24 hour window weeks ago
 - Centered on location of an EQ swarm
 - 30 miles away
- Tectonics
 - Normal faulting
 - Complex set of faults

Old houses

A closer look

Normal fault - divergence

Normal fault trace diagram

Normal fault trace diagram

- Typically fault plane dips steeply
- Perched terraces
 - Like near thrust fault traces
- Alluvial fans
 - Can be very large, as in Death Valley
- Subsidiary fault traces
 - Offsetting the soft fans and terraces

Sierra Nevada cartoon east side of range is very steep

Normal fault, Hebgen Lake, 1959

Slickensides - grooves made as two sides of fault slide past each other during fault motion

Corona Heights, SF, CA

Slickenside showing polish structures and striations. Related to glacial striations

Slickenlines (large-scale) or grooves in normal fault, Coyote Mountains, Salton Basin, California. Photo by Ed Beutner

Combination: oblique faulting

Borah Peak 1983 Normal and strike-slip NOAA web site

- Rupture begins
 - I place on fault where stress has exceeded strength
- Crack spreads outward over planar fault surface from focus
 - At about 3 km/sec (near shear-wave velocity).
- Larger area implies larger magnitude and longer duration of rupture

Rest of the story

- Energy from cracking and sliding rocks travels outward.
- These vibrations are felt and cause damage.
- Only a small amount of damage is caused by offset on the fault, vibrations do most of the destruction.

Vocabulary

- Focus point where the rupture started
- Hypocenter location and time of quake beginning (same as focus)
- Epicenter surface projection of hypocenter
- No dominant pattern as to where hypocenter is on the fault plane
- Rupture the sliding of one side of the fault against the other side

Epicenter and hypocenter

Footwall, hanging wall, focal depth, fault trace

More details

- Rupture spreads at 2 to 3 km/sec
- A larger quake will generally take longer to rupture, and have greater slip
- Generally, only part of a fault ruptures in each quake
- Usually, big faults have been recognized beforehand

View of rupture

Magnitudes and ballpark fault rupture sizes

- Magnitude 8 = 500 km
- Magnitude 7 = 70 km
- Magnitude 6 = 10 km
- Magnitude 5 = 1.5 km
- Magnitude 4 = 200 m
- Magnitude 3 = 30 m
- Magnitude 2 = 5 m

More factoids

- Largest amount of slip is generally near the middle of the fault rupture plane
- Near the edges, there is less slip
- Slip is generally in the same direction across the entire fault rupture plane
- Fault planes do not open or close, the two sides just slip sideways
- A point on the fault plane slips at a rate around ~1 meter per second

Idealized slip distribution

Next, seismic waves.

