The inside of the Earth

How to attract students to geoscience

• Just finished grad student recruiting
• Eos article, March 19th, 2002
• Emphasize financial rewards
 – They don’t care if it’s interesting
• Don’t use too many words, more pictures
• Pictures of computers
• Internet addresses
• Shave off beards! Dress well!
 – We’re perceived as looking like “nerds”
 – And often like slobs

Earth: Main ingredients

• Air
• Oceans
• Crust
• Mantle
• Core

This lecture

Masses

• Air 3×10^{19} kg
• Oceans 1000×10^{19} kg
• Crust $20,000 \times 10^{19}$ kg
• Mantle $400,000 \times 10^{19}$ kg
• Core $200,000 \times 10^{19}$ kg

What’s in the Earth?

• Quantities that we want to know
 – Forces, stresses, viscosity
 – Temperature, composition
 – History
• Quantities that we can measure
 – P & S wave velocities (seismology)
 – Density (seismology and gravity)
 – Surface rock, plate motions (geodesy)
How seismology looks at the Earth

- Travel times of direct waves
 - P waves
 - S waves
 - Surface waves, both Rayleigh and Love
- Reflected waves
- Trying to match entire seismograms
- Normal modes (Earth rings like bell)
- Plus gravity, magnetism, chemistry

Waves

- P
- S
- Love
- Rayleigh

What controls size of waves?

- Magnitude
 - Bigger slip (offset) or fault area leads to bigger motions
- Distance
- Wave type
 - S larger than P because shearing motion of quake produces shear waves (S) preferentially to compressional waves (P)
 - Surface waves larger than body waves because surface waves die away more slowly with distance

Process

1. Identify many waves, each with a different path
2. Measure either their amplitude and/or time of arrival
3. Reconstruct the structure through which the waves must have traveled

Surface waves, P, S, and PP paths

- S waves travel more slowly than P waves

Focus

Seismograph

Core

Mantle

Surface waves

P

Pp

P

S
Crust

- Layer of lighter composition than mantle
 - 2.7 g/cc in crust, 3.3 g/cc in mantle
- Mohorovicic seismic discontinuity (Moho) marks boundary between crust and mantle
- Thickness mapped by seismic work
 - Crust has P velocity 6 km/s, mantle 8 km/s
 - Crust has S velocity 3.5 km/s, mantle 4.5 km/s
- Thinner under oceans (4 to 6 km)
- Thicker under continents (25 to 80 km)
 - Causes most of topography on Earth

Oil exploration

- Mapping the upper few km of the crust
- Oil and gas seep upwards
 - From buried, rotting and cooked organic stuff
- Gets trapped in pools in structures like faults and warped layers
- Looks almost entirely at sedimentary rock
 - Relatively young, not fully cooked rocks
 - Starts out laminated; sand, silt, pebbles ...
Dynamite

Crust, Mantle, and Core

- Crust is thin veneer floating on mantle
 - 4 to 80 km thick
 - Upper part of rigid plates
- Mantle is most of Earth’s mass, dense rock
 - Slowly flowing in convection
 - Several “phase changes” in upper mantle
- Core’s radius is about half of Earth’s radius
 - Outer core is liquid iron, makes magnetic field
 - Inner core is solid iron

Isostacy: Crust is less dense than mantle, like wood floating on water

Moho

Moho is seismic jump that marks the base of the continental and oceanic crust

Grossly exaggerated vertical scale

Example without vertical exaggeration

Global crustal thickness

Walter Mooney
Some terms

- **Lithosphere** - strong layer composed of crust and uppermost mantle, 30-300 km thick (actually, lively debate about thickness)
- **Aesthenosphere** - underlying weak layer in the mantle

Moho occurs within lithosphere.

Details in the mantle

- But mantle is thought to be nearly uniform in composition
- Deeper rock is denser and stiffer due to increasing pressure, thus higher velocity
- Phase changes, 5% jumps in vel. & den.
 - Changes in molecular arrangement
 - At depths of 410 and 660 km
- 660 km depth separates upper and lower mantles
Phase changes in the Mantle

Testing models by waveform match

Record Section of the Earth

Listen for the tone of normal modes - gives long-wavelength properties

Quake Bulletin

Illinois M5.2
4:36am local time
Wabash Valley fault system
Felt up to 900 miles away
Little damage
Midwest quakes

Reflection:
PcP

Beno Gutenberg
(1889-1960)

P&S waves in the Earth

Example of core reflections

Echoes of a nuclear explosion

Interpreting Seismic Velocities

- Seismic wave velocity \(\sqrt{\frac{\text{Elastic stiffness}}{\text{Density}}} \)
- Velocity increases with depth and so does density
 - Therefore, velocity is dominated by stiffness
- Stiffness controlled by
 - Pressure
 - Temperature
 - Composition
 - Water
 - Crystal structure
P and S wave velocity vs. depth

P waves bent downward (deflected) at core-mantle boundary, large velocity decrease there.

S wave shadow

No S waves pass through outer core, therefore it is fluid!

Some real seismograms

Outer Core

- Liquid, 84% iron + 8% sulphur + 8% oxygen?
 - Lower P velocity than mantle
 - No S waves allowed in liquid!
 - Presence inferred from P and S shadow zones

- Convection leads to magnetic field
 - In fact, magnetic field as important as inertia
 - Complicated - magnetohydrodynamic!
 - Magnetic field reverses from time to time
 - Keeps atmosphere from being blown away

Magnetic field lines

Strength of field plus reversals imply that field generated by flow in conducting fluid - molten iron core.
Convection in the Outer Core (OC)

- Convection outside of tangent cylinder
 - Quasi-2D, columnar convection (Roberts '08)

- Inside tangent cylinder
 - 3D plumes, strongly affected by rotation
 - Possible polar upwelling and associated large-scale thermal winds

(Real science slide, Jon Aurnou, compatriot at UCLA)

Innermost inner core

- Remnant of earliest times?
- Georeactor?

Other things that vary with depth

- Temperature
- Gravity
- Pressure
- Density

Temperature

- Increases with greater depth
 - Gets hot in mines at about 25°/km depth
- Generally near melting point inside mantle
- We know temp. at surface
 - 0° - 30° C in air, close to 0° at ocean bottom
- 0° to 1500° Celsius in crust
- 1500° to 3000° in most of mantle
- 3000° to 4000° in core

Inge Lehmann (1888-1993)

- Solid, 92% iron 8% sulphur
 - hard to tell it exists, presence inferred from normal mode analysis
 - recently discovered to slowly rotate
 - About 0.2-0.3° every three years, still controversial
- Inner core grows as outer core “freezes”
 - because Earth is cooling, releases a lot of heat
 - eventually, outer core will all freeze
 - less protection from cosmic rays for us
Gravity and Pressure

- **Gravity**
 - Roughly constant through mantle
 - Diminishes to zero in the center of the Earth
- **Pressure**
 - Proportionate to weight of overlying material
 - Increases enormously with depth
 - Particularly in the iron core

Gravity and Pressure vs depth

Density

- **Density** is mass per unit volume
- Increases with depth
 - Partly just due to compression from increasing pressure
 - Partly from phase changes (small change)
 - Partly from compositional changes
 - Crust to mantle (small change)
 - Mantle to core (big change)
 - Partly from freezing (outer to inner core)

Density

Lateral variation in the Earth

- **Tomography**
 - Buzzword for finding 3-D structure
 - Similar to CAT scans, which look inside people
- **Wadati-Benioff zones**
 - Cold, subducting material is stiffer than average
 - Subduction seems to extend down to core
- **Hot spots**
 - Warm, mushier material that is rising

Cartoon view
Seismic tomography

• Like a CAT scan
 – reveals 3-D image of structure inside the Earth
• Shows where seismic waves travel faster or slower
• Colder material is stiffer (although denser)
 – Therefore has faster P and S velocities
 – But composition also affect wave speeds

How CAT scan works

Repeat procedure for transmitters all the way around target

Medical CAT scanner

Preparing the ice man for a CAT scan

Tomography reveals the subducted Farallon plate. It is cold, so it has high seismic velocity
Global heat flow pattern

- High at spreading ridges
 - Hot material is upwelling
- Cold on old continents
 - They have been cooling for billions of years
- Hot spots are also hot
 - but a minor feature

Heat flow pattern

Mantle temperatures at 100 km depth

The Earth: An ongoing project

- Connections
 - To what extent are the tectonic plates glued to the underlying mantle?
 - How variable is the composition in the mantle?
 - What action is at the core-mantle boundary?
- What do plumes really look like?
- How does the core dynamo work?
- Why is there structure in the inner core?