

Earthquake damage Two main points

- What are the ways that faulting causes damage?
- Why is there so much variability even between nearby areas in the degree of damage that occurs?

Hazards of faulting

- Generally, quake hazard is from ground shaking
 - But fault trace ground shift can be devastating right on fault trace
- Both greater ground shift and ground shaking in fault zone
- Few structures can withstand ground rupture

- San Andreas Fault zone in the Carrizo Plains
- Imagine tearing on fault trace
- And soft ground near fault trace
- How close is dangerous?

Fault zone width

Legal definition for Special Studies Zone

- 220 m on either side of mapped fault trace
- "... zone shall ordinarily be one-quarter mile or less in width, except in circumstances which may require the State Geologist to designate a wider zone."

Physical definition depends on how active and well-developed the fault is

- Width of San Andreas fault zone
 - 1-2 km

- Weakest in the middle

• 100-300 m

Building straddling fault in Nicaragua. 20 cm of slip in 1972 earthquake caused collapse.

Avoid living in the fault zone

- Could be zoned for parks
- Or, at a minimum, streets
- It's best to live 5 miles or more away from faults

 Often unrealistic
- Even "creeping" faults are bad news

Denali 2002 earthquake in Alaska

Daly city

- The San Andreas Fault runs through Daly City
- Zoning ignored the presence of the fault
- Now poster city for bad planning

Relation of danger to faults

- Worst danger near faults
 Most damage within 50 km
 Occasional pockets of damage out to 100-200 km from rupture Usually due to very soft soil
- Shape of isoseismals
 - M < 6.5 form circular isoseismals
 - Long rupture: elongated isoseismals

Next: Soil Effects

Strength of shaking depends -On earthquake size

- -On distance to earthquake
- (actually to region of large slip)
- –On site
 - nature of the ground just under the structure

Soft Sites

Stronger shaking on

- Soft soil, Landfill
- Waterside sites

Seismic waves grow in amplitude when they pass from rock into less rigid material such as soil

 Soils behave like jelly in a bowl, which shakes much more than the plate

Influence of soft ground

Dangerous geology

- Old filled stream beds
- Sand dunes
- Water-saturated muds
- Softness can vary on a fine scale
- Motion can vary by factor of 4 in 100 m
- 1906, near-surface geology mattered
 - Santa Rosa and San Jose as hard hit as SF due to soft ground downtown

Bay Area soil conditions

- Correlates with damage pattern
- Strongest damage is were waterdeposited sediments are

Keller, 4-14

LA shaking pattern predicted from geology

More on soft ground

- Mexico City badly damaged in 1985
 - Quake more than 200 miles away
 - Extremely soft soil downtown
 - -10,000 deaths
- Soft sites common
 - LA, Bay Area, Seattle, Salt Lake City, Anchorage, Boston, New Orleans ...

Extreme case: Soil Liquefaction

- Liquefaction: compaction of watersaturated soil during intense shaking allows water to flow upward and the soil loses its shear strength and flows, becoming liquefied into a kind of quicksand
 - Liquefaction strikes soft, sandy watersaturated soils
 - Usually low-lying and flat
 - Buildings may tilt or sink into liquefied sediments; tanks may float

General liquifaction criteria

- Historical criteria

 What liquified last time?
- Geological criteria
 - What soil is similar to soils that liquified last time
- Compositional criteria
 - See next slide
- State criteria
 - Relative density, pre-stress

- Fraction finer than 0.005 mm <15%
- Liquid Limit, LL <35%
 - "Liquid limit" water content above which material acts as a liquid
- Natural water content > 90%
- LL Liquidity Index < 0.75

Landfills

- Often poorly compacted material Organic material decays, producing voids and weak spots that can settle
- Therefore, expect
- Strong shaking in earthquake
 Ground can settle substantially
- Newer landfill better compacted, may still have problems in large quake

More about landfills

- Often impossible to detect

 Pre-WWII methods often leave voids
- Clues
 - Sidewalk cracks, misalignment of adjacent buildings, doors, or windows can be clues

Riverbanks, lakesides

- Riverbanks are often thick layers of soft, silty clay with a lot of water
- Same problems for edges of bays and soil under levees
- Many downtowns are on riverbanks
- Riverbank towns often have old buildings
- Many roadways, railways, pipelines along the water

Salinas River in 1906

59

1959 Hebgen Lake

Cliffs and Ridges

- Sometimes experience greater shaking because unsupported by ground and rock on one or both sides
 - Example: Glenridge, Bel Air in LA
- More often, less shaking – Harder rock
- Landslide and rockfall potential
- Examples
 - Santa Monica Mts. did OK in Northridge
 - Santa Cruz Mts. had some problems in Loma Prieta
 - But mainly due to bad construction

- Soft soils stronger shaking, settlement
- Wet soils liquefaction potential, landsliding potential
- Cliffs and ridges stronger shaking, landsliding potential

Landslides

- Landslide: a chunk of ground, usually wet and weak, breaks loose, then slides down hill
- Landslide potential can exist on hillsides and steep slopes
 - From both natural and manmade causes
 - Increased potential when wet
 Earthquakes often trigger
 landslides

Background Seasonal problem, worst after heavy rains Luckily, Loma Prieta, San Fernando, and Northridge quakes struck in dry weather 1971 San Fernando quake Even in dry season, caused 1000+ landslides with 50+ feet of sliding 1994 Northridge quake Caused 9000+ slides because energy was directed towards mountains

La Conchita near Santa Barbara 1995 No one hurt

70,000 cubic July 10, 1996 meters of rock **Yosemite slide** Fell 500 meters Registered as M 2 seismic event **Near Glacier**

- Point, above valley next day killed one
- A regular problem at Yosemite

Granite Point

200 ton fall the

and injured 14 at

Obscure quake risk

- 1994 Northridge quake
 - Lots of dust floated out over LA
 - Valley Fever
 - Fungus spores in near-surface dust
 - Incidence of Valley Fever higher by a factor of ten in 8 weeks after guakes
 - An extra 5-10 deaths

http://landslides.usgs.gov/html_files/nlic/California/Jibson/valleyf.htm

- Raised death toll from Northridge
- First self-referenced Google result

Landslide: Peru, 1970 due to quake, 20,000 killed, 16 km slide, 4 km drop, with glacial ice

Keller, 13-9

Turnagain Slide, Anchorage 1964 Alaska

- Slide: 3 km wide and 400 m deep
- A second slide dropped the business district 10 feet
- Slide was previously recognized and mapped
- Area that slid has been rebuilt

 Best views in town

