

This lecture

- Dams
- Buildings
- Proper response to a quake
- Real odds in a quake

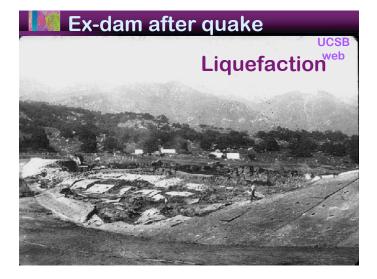
Manmade hazards

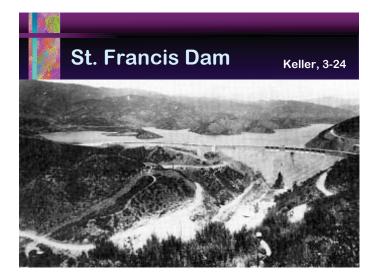
- Certain structures present a hazard to neighboring or nearby buildings, including
 - Dams and reservoirs
 - Dikes and levees
 - Water tanks
 - Neighboring buildings

Dams and reservoirs

- Dams are structures most hazardous to populated areas
- Heavily populated urban areas like LA and SF contain many small reservoirs within city limits

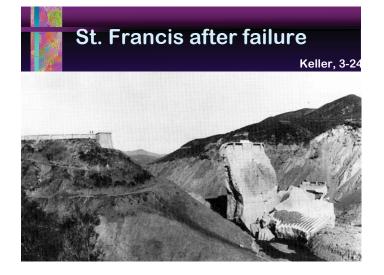
Dam collapses


- Sheffield Dam in Santa Barbara
- St. Francis Dam near Saugus
- Baldwin Hills Reservoir
- Van Norman Dam near San Fern.


Sheffield Dam

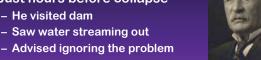
Sheffield Dam failed in Santa Barbara earthquake of 1925 (M7)

- 250 m long, 5 m high, 30 million gallons
- 100 m of dam liquefied and washed down
- flooded lower Santa Barbara


Before filling

St. Francis

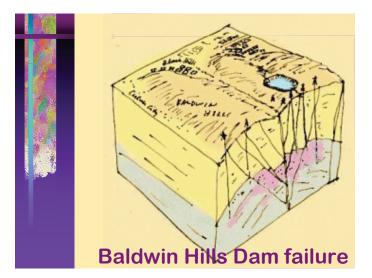
- St. Francis Dam near Saugus, CA
 - Failed March 12, 1928 at night
- 500 people killed, \$10 million is damage
- Problem complicated
 - Rocks softened when wet
 - Fault zone carried water
 - Dam sprung a leak
 - Then softened rock slipped, dam failed

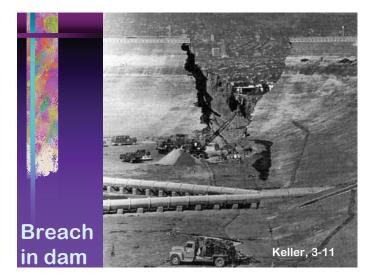


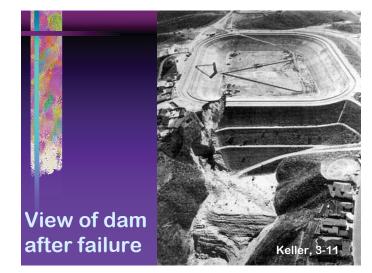
Mulholland's downfall

Chronicled in movie "Chinatown" Built the dam through intrigue Just hours before collapse

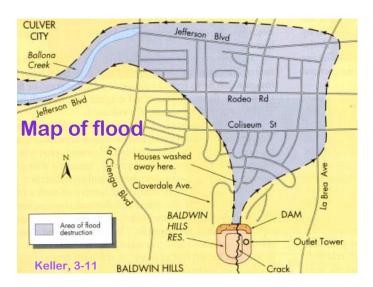
- He visited dam - Saw water streaming out

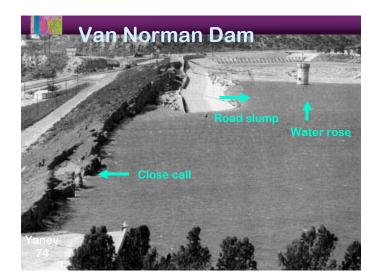

- Crucified after failure
- Hermit for rest of life




oroner's Inquest that he "only envied those e went on to say "Don't blame anyone else, you just fasten it on me. If there was an error in human judgment, I was the Coronor's inquest

Another dam collapse

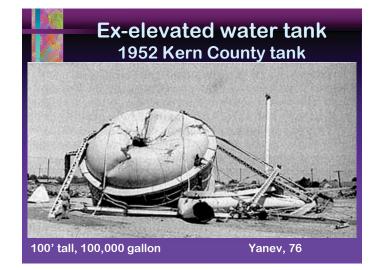

- Baldwin Hills Reservoir
 - December 14, 1963
 - failed after weakening by several years of creep on Newport-Inglewood fault
 - Constructed in 1951, but built on the fault zone responsible for 1933 Long Beach earthquake
 - Claimed 5 lives despite quick evacuation of area below reservoir, 2 hours of warning, \$15 million in property damage
 - Fault creep may have been related to withdrawal of oil underneath from 1923 to 1963



Near collapse of dam

- Lower Van Norman Dam in San Fernando earthquake of 1971
 - Constructed in 1915, reinforced several decades later
 - Quake shook upstream surface into reservoir, left only 5 ft margin above water
 - Threatened 12 square miles with 80,000 sleeping residents

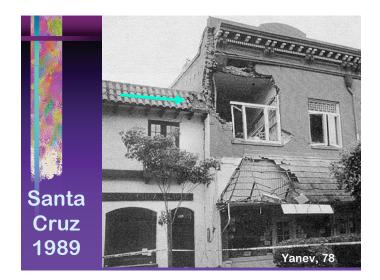
Tanks


Heavy and may be old and weak

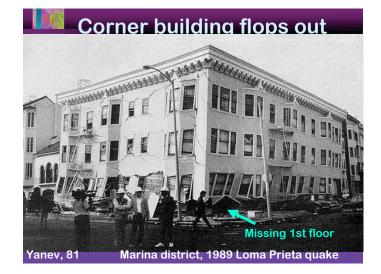
Thin-walled and flimsy

May collapse during quakes

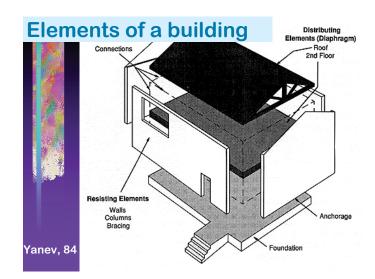
- Several kinds
- Water
- Oil
- Wine

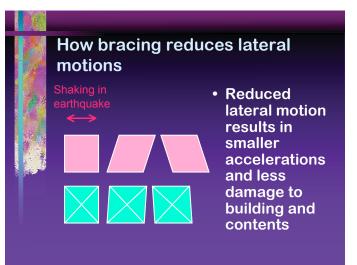

Nogales Bay, 1906

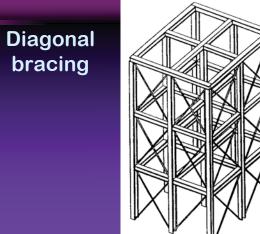
Neighboring buildings


Two adjacent buildings usually respond to earthquake vibrations in different ways and therefore may pound against each other

- especially bad for higher building at roof level of lower one
- Or one may fall on another
- Or corner buildings may flop out

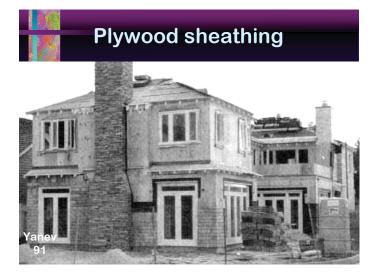



Structural components of a building


- Distributing elements
 - are horizontal
 - consist of floors and roof
- Resisting elements
 - are vertical
 - consist of walls, columns, bracing
- Foundation
- Connections

How do earthquake forces affect buildings?

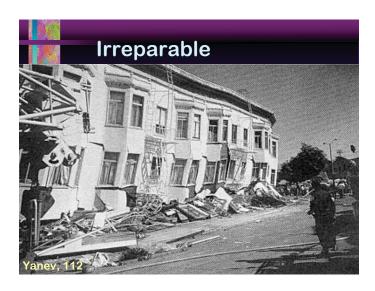
- Structural elements designed to support weight
 - of building, furnishings, occupants
- Therefore, vertical forces of earthquake are usually resisted effectively by buildings
- However, lateral bracing needed to resist horizontal forces (ground shaking or wind)


Yanev, 86

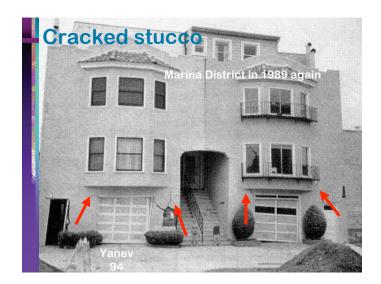
Earthquake resistance Wood frame (and with stucco) Unreinforced brick

- Concrete block
- Reinforced brick
- Unreinforced stone and adobe
- Steel frame
- Concrete frame
- Commercial
- Concrete shear wall
- Concrete tilt-up

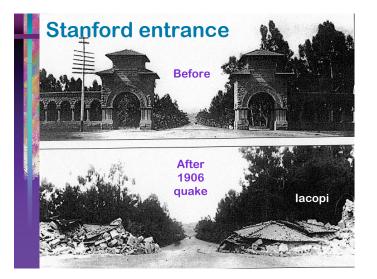
Wood-frame buildings


- If well-built, safest structures due to lightness and flexibility of wood
- May still have damage if
 - On unstable ground
 - Not well fastened to foundation
 - Inadequate lateral bracing
 - Poorly maintained
 - Weak foundation

Concept of soft story


- Large openings reduce shear strength of walls
 - openings include garage, windows, doors
 - often but not always at ground level

Wood-frame with stuccoed walls

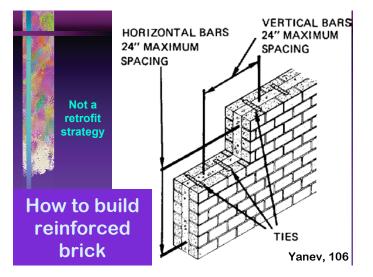

- Stucco adds weight, therefore makes building weaker
- 1 " of stucco strong as 1/4 " plywood
- Stucco damage is around openings where stresses concentrate

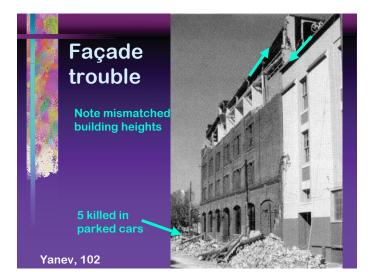
Unreinforced brick buildings

- Most dangerous type in earthquake
 - suffer most severe damage
 cause majority of deaths
- Difficult and costly to repair and strengthen
- 9500 brick buildings in Los Angeles area

Why are they so dangerous?

- Brick is heavy and inflexible
- So lateral motions create large inertial forces that crack mortar (usually weak).
- Bricks can separate, walls collapse unless wood-frame interior walls can hold up building.

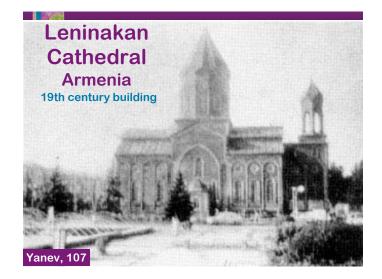


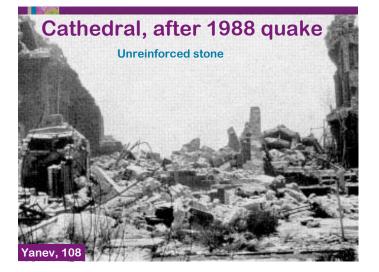

Examples of problems with brick structures

- In 1952 Kern Co. quake, only 1 of 71 brick buildings in Bakersfield survived undamaged
- In 1983 Coalinga quake most of 90 brick buildings removed
- Most of 64 killed in 1971 San Fernando died in collapse of a brick hospital
- Most of deaths in 1989 Loma Prieta not due to collapsed freeway were caused by falling bricks

Hard to reinforce URM buildings

- Strengthening is inhibited by
 - -High retrofit costs
 - Trend toward historical preservation
 - -Budget cutting
 - -Lack of landlord concern

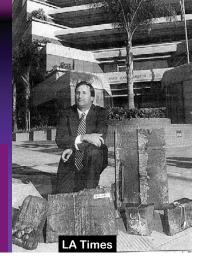




Unreinforced stone and adobe Have practically no strength for resisting lateral forces of earthquakes

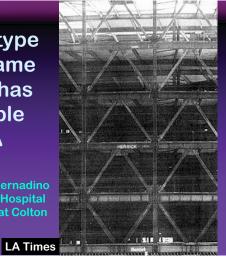
- Difficult to strengthen

 Not feasible except for historical monuments
- Many such buildings in Central and South America, Southern Europe, and Asia
- Responsible for numerous casualties


Commercial buildings

- Steel-frame buildings
- Unreinforced masonry
- Concrete-frame
- Concrete shear wall
- Concrete tilt-up

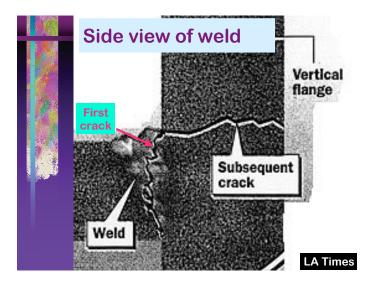
Welds in steel frames serious business


- Example: St. John's Medical Plaza in Santa Monica
 - 5-story office space and exam rooms for doctors built in 1986
- Damaged in 1994 Northridge quake
 - No visible problems
 - Inside walls, vital welds were broken
 - -\$10,000,000 lawsuit

The type of frame that has trouble in LA

The San Bernadino **Regional Hospital**

Larger issue


Metal used in welding is weak

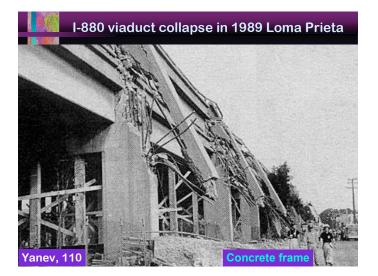
- "120" or "E70T-4"
- This metal has been used across western US for decades
- 1500 LA buildings use this welding metal
- 150 had cracks in Northridge
- Which was only an M7 quake Was outlawed in LA in July 1996
 - For new construction only, of course

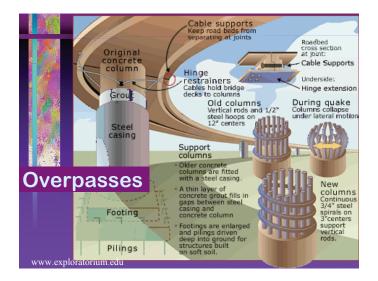
Technical details

- About as strong as other welds
- But, 1/4 as resistant to cracks as other welding metals
 - Difficult to measure
- Can be applied from thicker wire at higher temperature
 - So using this metal speeds up welders by 20-30%
 - Which saves money

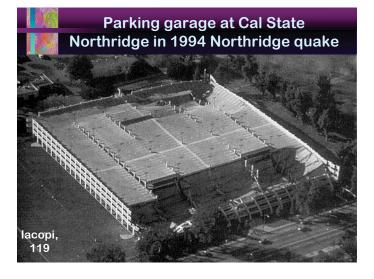
Whose fault was (is) it?

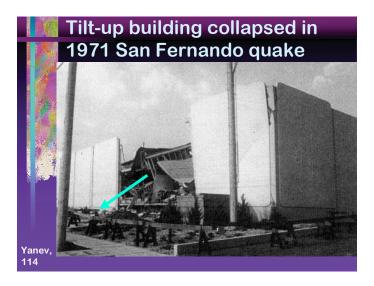
- Company that made it (Lincoln) - Know welding material best
- City of LA - Style of construction should have been outlawed
- Engineers that designed buildings - Their job to make building that works
- Welders who assembled buildings - Establishes standards for welding


History is murky


- Lincoln people claim not to know what metals they tested and when
- University researchers paid by Lincoln also developing faulty memories
- Easy for LA to claim ignorance

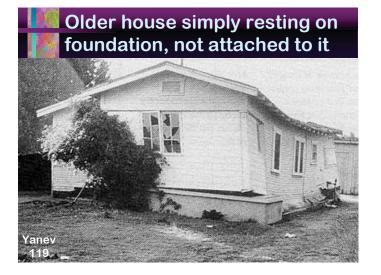
Concrete-frame structures

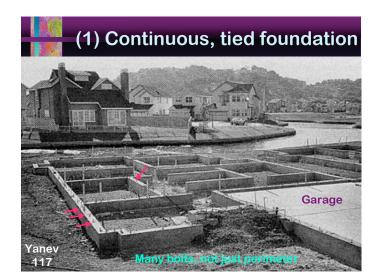

- Second most dangerous structure
- Uses concrete beams and columns in same manner as steel beams are used on steel frame buildings


 but more brittle and much heavier
- Cypress freeway (I-880) had this type of construction
- Many collapsed in Mexico City in 1985 M~8 quake (10,000 deaths)


- 526 isolators / sliders installed
 52 viscous dampers installed in the basement and 12 viscous dampers installed in the tower
- 30,000 cubic yards of concrete
- 16 million pounds of reinforcing steel
- 35,000 cubic yards of earth excavated
- \$300 million

The "moat" allows building to float





Particular problems

- Foundations
- Cripple walls
- Stilts and pilings
- First-floor garages
 - Parapets
 - Chimneys

(2) Mat foundation

- Reinforced concrete slab resting on soil
- Used on soft soil
 - Stronger than continuous, tied foundation
 Minimizes hazard from differential soil movements by bridging over pockets of loose

Turkey, too much liquifaction

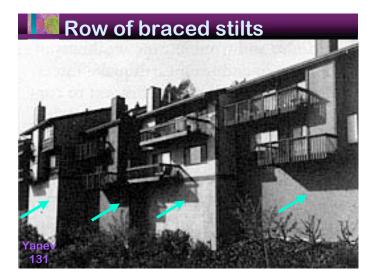
soil

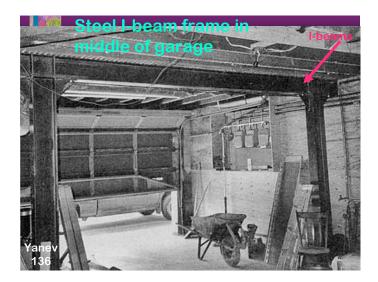
(3) Drilled pier foundation

- Steel or concrete pilings set deep in ground
- Used on very soft, weak, or unstable soils

Cripple walls

- Walls of crawl space
 - Short wood walls used to elevate house above ground
 - Access to substructure and utility lines
- Often a weak zone in older house
- Because a crawl space has only peripheral walls but no interior walls to absorb the force of shaking
- Badly braced cripple walls 2nd most common weakness of older houses
 Next to chimneys

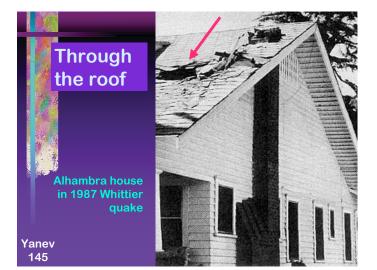

Cripple wall failure in 1971 San Fernando quake


Great views but houses on stilts need special attention

Parapets

- Masonry parapets often first components to fail in guake
 - Building top undergoes highest amplitude shaking
 - Parapet may be poorly connected or weakened by weathering
 - Often out of sight, so poorly maintained
 - Often located above entrances
 - Danger to people running out of building
- May need to be shortened, anchored, and capped with reinforced concrete

during quakes hazard

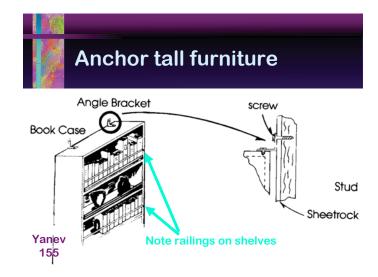

Chimneys Heavy and high up, subject to strong forces

Often damaged

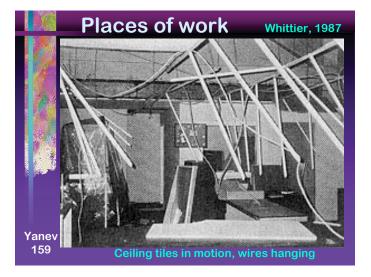
- 75% of chimneys fell in Bay Area in 1906 quake Masonry (brick or stone) chimney pre-1960 is unlikely to be tied to structure adequately and may collapse in quake

- Can fall through roof or break away from house
- the higher it rises above roof, the greater is
 - · Often breaks at roofline

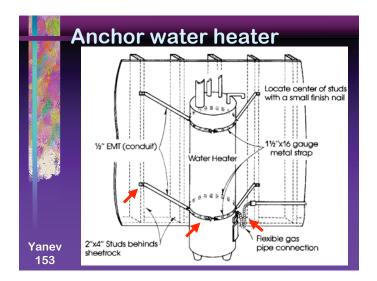
Remedies for chimneys


- Lay 1 inch thick plywood on roof around chimney
- New prefabricated sheet-metal chimneys are light and strong and will not collapse

Rest of lecture


- Interior damage

 How to be prepared for quakes
 - -How to behave during quake
- Insurance
- Risk in earthquakes



Planning for quakes

- Consider safe and dangerous
 places in your house
- Consider how to get to exits
- Learn how to shut off utilities
- Anchor water heater

• Water

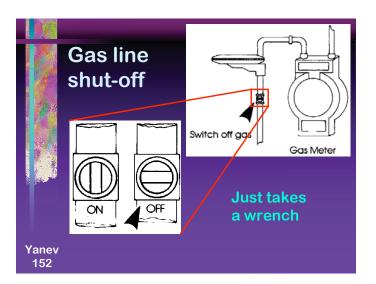
- Water heater and toilet tanksPurification tablets helpful
- Food
 - Usually several day's food around
 - Use refrigerated food first
- First aid kit
 - And a book on first aid
 - Useful to take first aid course as well
- Fire extinguisher
 - Needs periodic checks or servicing

During quake

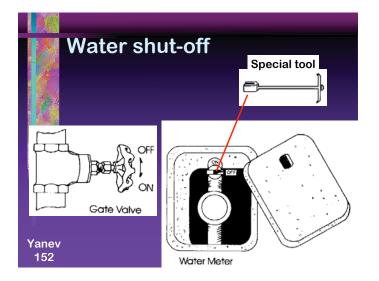
- Get under table or go to doorway
- Avoid big windows and chimneys
- Do not rush outdoors or into
- stairwells

Olive View Hospital San Fernando quake, 3 out of 4 fell over

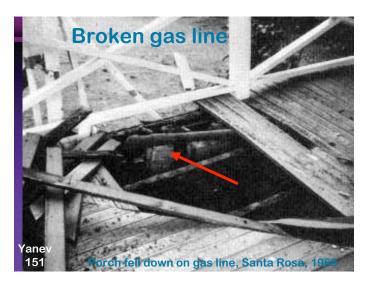
- Stop in an open area
- Stay in car a while

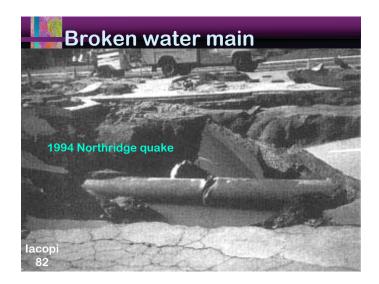


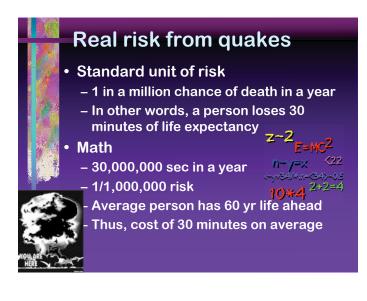
Wax


Baywatch

figures


After quake • Care for injured people • Check -Gas lines -Electric lines -Then water lines



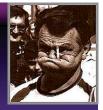


Earthquake insurance

- No simple strategy
- Changing state regulations
- Deductibles

- STATE FARM
- Vulnerability of insur. co.
- FEMA (Federal Emergency
- Management Agency) as back-up for sinsurance
- Should make house safe, in any case

Langston Hughe


Example

- Cigarette smoking
 - Each cigarette adds about 1 in a million chance of death
 - So smoking a cigarette shortens life, on average, by half an hour, or several times longer than the cigarette takes to smoke

- Smoking a cigarette - Cancer, heart disease
- Drinking half a bottle of wine - Cirrhosis of the liver
- An hour in a coal mine - Black lung
- Three hours in a coal mine - An accident

More

Air pollution

- Living 2 days in NY or Boston Accidents

6 minutes in a canoe

- 10 miles on a bicycle
- 150 miles by car
- 1000 miles by jet

Cancers

- 6000 miles by jet
- Living 2 months in Denver (high altitude)

Malda al

- 2 months in a stone building (radioactivity)
- 1 chest X-ray

Still more 1 in a million

risks

- Cancers
 - Living 2 months with smoker
 - -40 tbsp. peanut butter (aflatoxin B)
 - Miami water for a year (chloroform)
 - 30 cans of diet soda (saccharin)
 - 100 charcoal broiled steaks

Risk of dying in a year

All natural causes (age 40) 1 in 850	
Violence or poisoning	1 in 3300
Traffic accident	1 in 8000
Quake (living in Iran)	1 in 23,000
Train accident 🛛 🚽	1 in 500,000
Quake (California)	1 in 2,000,000
Lightning 1	in 10,000,000
Windstorm	in 10,000,000