

Outline

- Types of Glacial Lake Outburst Floods
 - Subglacial
 - Moraine Dammed
 - Ice Dammed
- Chamoli Landslide
- Downstream Impacts
- Megafloods

Types of Glacial Outburst Floods (GLOFs)

Subglacial Outburst Floods

Moraine Dammed Lakes

Ice Dammed Lakes (Marginal)

Subglacial Outburst Floods

Heating from volcanic eruption underneath glacier

Subglacial Outburst Floods

2010 Eyjafjallajökull Eruption

Subglacial Outburst Floods

- Peak discharge of 2640
 m³ s⁻¹
- Sediment and and ash laden water
- Extensive flood area

- Physical experiment with packed sand dam
- Analogous to moraine, landslide, or human manufactured sediment dam failure

Key Observations:

- Only small event needed to initiate breach
- Discharge first occurs slowly, then more quickly as a larger channel is incised
- Discharge is limited when
 - Lake level drops so that hydrostatic pressure is insufficient to erode a larger channel
 - Lake level drops to the new outlet height

Moraine Dam Mitigation

- Drain lake in a controlled manner
- Pre-cut channel to initiate earlier and smaller outburst flood
- Reinforce moraine with engineered materials

 Water pressure is low compared to ice pressure (weight of overlying ice).

 Ice pressure closes tunnels and cracks.

System is self-sealing.

Ice density is 9/10 of water density.

- Ice can float when water depth h reaches 90% of ice depth H
- Water pressure = ice pressure at bedrock.
- Water pressure still cannot force open tunnels.
- But, if a tunnel exists, ice pressure cannot close it.

h > 0.9 H - dam can float!

- Water pressure exceeds ice pressure.
- Tunnels forced open by water pressure (like inflating balloons), and ...
- Tunnels melted open by turbulent energy from water.
 Look out downstream!

2018 Bear Glacier GLOF

- Lake fills in late summer
- Remains steady through winter
- Dam breaches after snowmelt

NOTE:

- Glacier collapses with draining lake
- Lake immediately begins to refill

2018 Bear Glacier GLOF

Let's watch the same event in more detail

Subglacial Tunnels

A leak starts through a small tunnel...

- Energy from falling water is converted to turbulent energy.
- Turbulence heats water in tunnel.
- Warmed water melts and enlarges tunnel.
- More flow, more turbulence, more heating, more melting...

(Positive feedback loop!)

Subglacial Tunnels

Perito Moreno

Discharge Patterns

Recall that both moraine dam and ice dam outburst floods have mechanisms with positive feedback loop behavior.

What does this mean for discharge?

Chamoli Landslide

Feb 7, 2021

Chamoli Landslide

Chamoli Landslide

As of Feb 15th, <u>54 people</u> are known to have lost their lives and <u>179 people</u> are reported to be missing.

Downstream Impacts

Himalayas particularly prone. Why?

Are GLOFs an increasing hazard?

Downstream Impacts

Himalayas particularly prone. Why?

- Reliance on glacial lakes for water
- Tendency to build near rivers or near glacial lakes
- Steep terrain -> available land in flood zone

Are GLOFs an increasing hazard?

Yes!

- Global warming
 - Creation of new glacial lakes during recession
 - More water
- Increasing population in mountainous regions

What if we had even bigger floods?

The world's largest floods from: O'Connor, Jim E., and John E. Costa. The world's largest floods, past and present: their causes and magnitudes. No. 1254. Geological Survey (USGS), 2004.

Himalayan Megafloods- Susannah Morey

https://sites.google.com/uw.edu/susannah-does-science/agu-2020

Glacial Lake Missoula- Channeled Scablands

J. Harlen Bretz

M. Parfit 1995 Smithsonian 26(1) 48-59

Dam Location – Lake Pend Oreille

M. Parfit 1995 Smithsonian 26(1) 48-59

Missoula Bathtub Ring

M. Parfit 1995 Smithsonian 26(1) 48-59

Quincy Basin Potholes

M. Parfit 1995 Smithsonian 26(1) 48-59

Erratics! - Joel Gombiner

Nearest upstream granite is 50mi away Small, seasonal stream. Incapable of transporting boulders of this size.

