Time in Geology

- The age of objects can be determined if
 - a process of change can be identified that has a predictable (usually constant) rate
 - The starting condition is known and can be quantified
 - The current state can be accurately measured
- Brainstorm methods to estimate age of Earth
- Decay of unstable isotopes
 - ⁴⁰K, ¹⁴C, ²³⁵U, ²³⁸U
- Cosmogenic isotopes

Geologic Time Lord Kelvin and the Age of Earth

- Assumptions:
 - Heat removed from Earth by conduction
 - No internal sources of Heat
 - "Known" initial (primordial) temperature
- Use Fourier's Theory of Thermal Conduction
 - Heat flow is proportional to the gradient in temperature
- $\odot\,$ Temperature gradient decreases with time as planet cools
 - Rapid increase with depth for young Earth
 - Less increase with depth for older Earth
- His result: Earth is 65 million years old

Geologic Time via Radioactive Decay The Assumptions

- The rock or mineral has neither gained nor lost either Parent or Daughter
 - It is a "Closed System"
- One must be able to determine the initial Daughter concentration
- The value of the decay constant must be accurately known
- Measurements of D and P must be accurate and representative of the rock or mineral to be dated

Age Dating Cosmogenic Isotopes

- Cosmic rays produce rare isotopes through collisions with elements in minerals at Earth's surface
- Examples: ¹⁰Be, ³⁶Cl, ²⁶Al, ⁴¹Ca, ¹²⁹I
- Concentration builds up with longer duration of exposure
- Can be used to date surfaces, measure erosion rates, trace groundwater, and more
- \odot Relatively recent field of investigation

Depositional Remnant Magnetization (DRM)

- Small magnetic mineral grains suspended in calm water are aligned with Earth's magnetic field
- As they settle on the bottom, they maintain alignment
- The sedimentary rock thus has a weak magnetization parallel to Earth's field at the time of deposition

