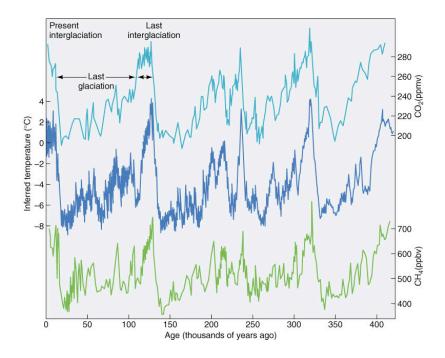
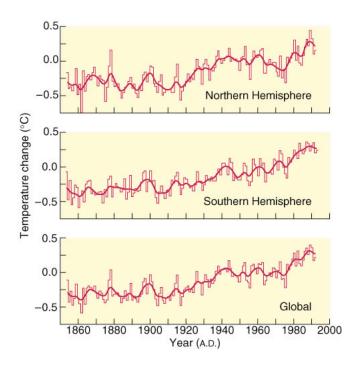
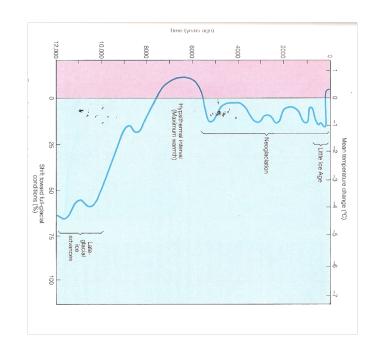

Paleoclimate, GCMs, Tectonics


Climate Proxies


- ¹⁸O/¹⁶O ratio in sediments or ice
- Pollen
- Tree rings
- Lake levels
- · Loess-soil record
- Terminal location of glaciers
- Human records


The Climate Record

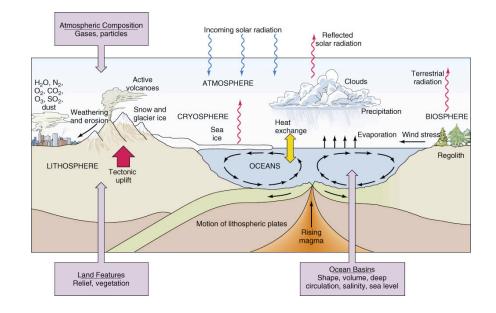
- 50 million years
 - Collapse of Mesozoic climate
- 2.5 million years
 - Repeated continental glaciation (more than 20 times)
- 100,000 years
 - Last full continental glaciation cycle
- 10,000 years
 - Recovery from most recent continental glaciation
- 700 years
 - The "Little Ice Age"
- 100 years
 - Anthropogenic era

Causes?

- Shifting Plates
 - Change in ocean currents
 - Change in continental position relative to poles
 - Change in atmosphere due to volcanic activity & weathering
 - Change in atmospheric circulation due to mountains
- · Biologic activity
- Solar activity
- The "Milankovitch" cycles and Northern Hemisphere insolation
 - Eccentricity (100,000 years)
 - Tilt (41,000 years)
 - Precession (23,000 years)
- Anthropogenic

Cause of "Little Ice Age"?

(and other Holocene variability)

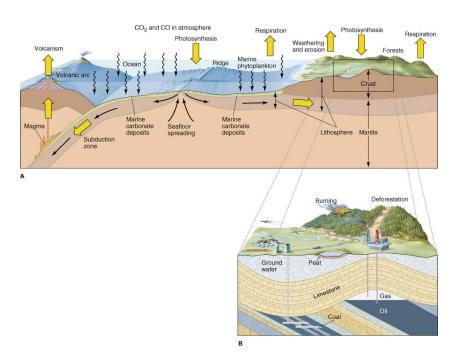

- Hypothesis: energy output of the Sun fluctuates over time
 - Correlation between sunspot cycle and weather patterns?
 - Fewer sunspots during 17th century?
 - Not yet convincing argument
- Volcanic emissions produce detectable changes of climate
 - Dust blocks sun few year time scale
 - 1816 the "year without a summer" (Mt Tambora eruption)
 - SO₂ scatters light decade time scale

Current Trends

- Warming of 3°C by end of century
- Snowline up by 500 m
- All but a few glaciers in Alps, Cascades, Himalayas will disappear

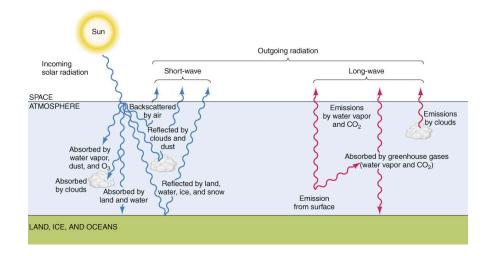
Earth Climate System

- Interacting components:
 - The atmosphere.
 - The hydrosphere.
 - The solid Earth.
 - The biosphere.



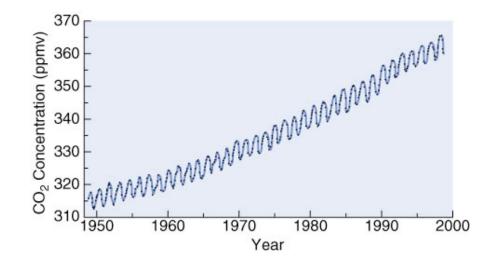
The Carbon Cycle

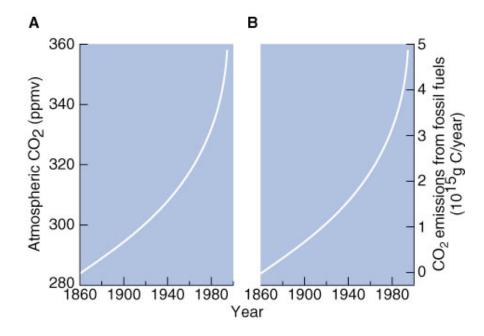
- Carbon: five reservoirs:
 - In the atmosphere, it occurs in carbon dioxide.
 - In the biosphere, it occurs in organic compounds.
 - In the hydrosphere, it occurs as carbonic acid.
 - In the crust, it occurs both in the calcium carbonate of limestone and in decaying and buried organic matter such as peat, coal, and petroleum.
 - In the mantle, carbon has been present since the Earth first formed. Some is recycled by subduction, some released by volcanism


Biosphere<->atmosphere

- Plants extract CO₂ from the atmosphere
 - photosynthesis to form organic compounds.
 - Decay returns CO₂ to atmosphere
 - Rapid cycle every 4.5 years
- Not all returned
 - Some dissolved in water
 - Extracted in shells
 - Precipiated as limestone
 - Some cycled into mantle in subduction
- Human activity accelerates release into atmosphere

Greenhouse Effect

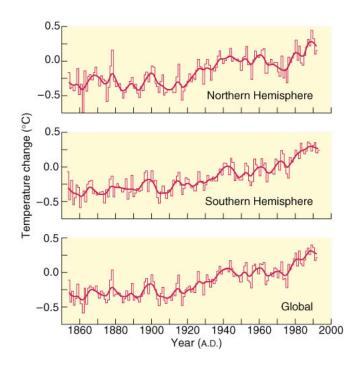

- Radiation balance
 - Earth receives energy from sun
 - Earth radiates energy into space
 - Balance required if temperature constant
- Solar radiation:
 - Some is absorbed by land and oceans
 - Some is reflected by
 - Water
 - Snow
 - Ice
 - Reflective surfaces
- Atmospheric gases
 - Transparent to visible light
 - Absorb infrared light



Greenhouse Gases

- Dry air consists mainly of three gases:
 - Nitrogen (79%).
 - Oxygen (20%).
 - Argon (1%).
- Water vapor is usually present in the Earth's atmosphere in concentrations of up to several percentage points, and accounts for about 80 percent of the natural greenhouse effect.

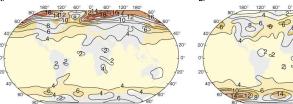
- The remaining 20 percent is due to other gases present in very small amounts:
 - Carbon dioxide.
 - Methane.
 - Nitrous dioxide.
 - Ozone.

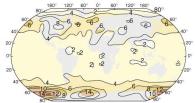

- Inescapable conclusion: anthropogenic (human-generated) burning of fossil fuels is primary factor in the observed increase in atmospheric CO₂.
- Additional contributing factors are:
 - Widespread deforestation.
 - Use of wood as a primary fuel.
- Largest yearly increases on CO₂ in the 1990s occurred in years with maximum El Niňo conditions
 - warmer water holds less dissolved CO₂
 - CO₂ is less likely to be absorbed by the ocean in an El Niňo years.

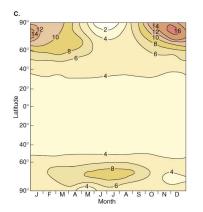
Methane

- Methane (CH₄) absorbs infrared radiation 25 times more effectively than CO₂.
- Methane levels show increases that parallel the rise in the human population.
- It is generated by:
 - Biological activity related to rice cultivation.
 - Leaks in domestic and industrial petrochemical use.
 - The digestive processes of domestic livestock.

Global Climate Change

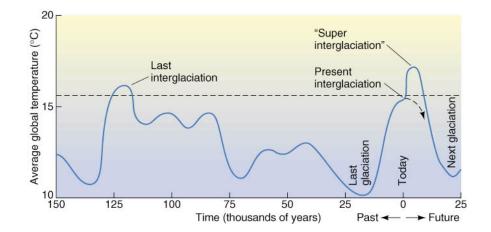

- Correctly assessing recent global changes in temperature is a very complicated task.
 - Few instrumental measurements were made before 1850.
 - Vast regions have no weather data before World War II.
 - The earliest records are from western Europe and eastern North America.
 - Records from oceanic areas (70 percent of the globe) are sparse.




- · Successful in simulating current general climate patterns (although may incorrectly predict tomorrow's weather)
- Require input boundary conditions:
 - The solar radiation reaching Earth.
 - The geographic distribution of land and ocean.
 - The position and heights of mountains and plateaus.
 - The concentrations of atmospheric trace gases.
 - Sea-surface temperatures.
 - The limit of sea ice.
 - The snow and ice cover on the land.
 - The albedo (reflectivity) of land ice and water surfaces.
 - The effective soil moisture.

General Circulation Models (GCMs)

- Three dimensional mathematical model of Earth's climate system -
 - predict weather (short term)
 - Predict future climate
 - Explain past climate trends
- · Can link atmosphere, hydrosphere, biosphere, and geosphere

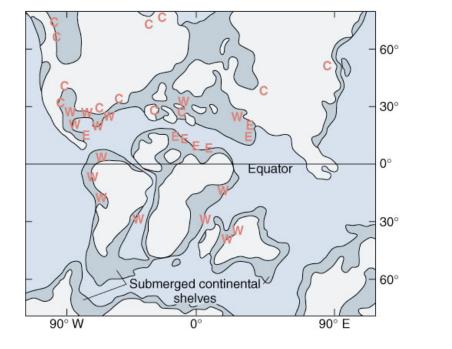


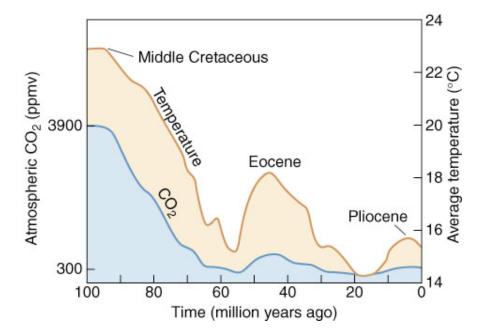
Some unknows

- The rate at which the projected warming will occur depends on a number of uncertainties:
 - How rapidly will concentrations of the greenhouse gases increase?
 - How rapidly will the oceans respond to changing climate?
 - How will changing climate affect ice sheets and cloud cover?

Expected Environmental Changes

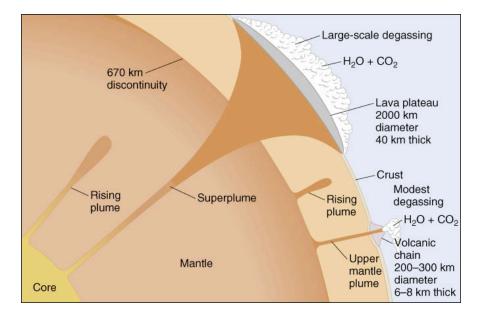
- · Global precipitation changes because of
 - Increased or decreased evaporation.
 - Changes in vegetation.
 - Increased storminess (warmer, wetter atmospheres favor an increase in tropical storm activity).
 - Melting or growing glaciers.
 - Warmer summers favor increased ablation.
 - Warmer air in high-latitudes could evaporate and transport more moisture causing glaciers to grow larger.


- Reduction of sea ice.
- Thawing of frozen ground.
- Rise of sea level.
- Changes in the hydrologic cycle.
- Decomposition of soil organic matter.
- Breakdown of gas hydrates.
 - Ice-like solids in which gas molecules mainly methane, are locked in the structure of solid H₂O,
 - Found in some ocean sediments and beneath frozen ground.


The Past As A Key To The Future

- Geologic record: past climate has paralleled today's climate only occasionally.
- Interglacial interval approximately 12,000 years old
 - close to the age where a return to glacial conditions can be expected.
- Climate in the last million years has occasionally been warmer than today's climate.
 - In the early Holocene, from 10,000 to about 6000 years ago, average temperatures were 0.5 to 1°C warmer than today.
 - About 120,000 years ago, global temperatures were 1 to 2°C higher than today.

Why Was the Middle Cretaceous Climate 8°C Warmer?


- The world was inhabited by huge carnivorous dinosaurs.
- Coral reefs grew 5 to 15^o closer to the poles than they do now.
- Vegetation zones were displaced about 15° poleward of their present positions.
- Sea level was 100 to 200 m higher, indicating the absence of polar ice sheets.

- Several factors could be involved in producing Middle Cretaceous globally warm conditions:
 - Geography.
 - Ocean circulation.
 - Atmospheric composition.
- The most likely source CO₂ entering the atmosphere is volcanic activity.
- Geologic evidence points to an unusually high rate of volcanic activity in the Middle Cretaceous.

- Vast outpourings of lava created a succession of great undersea plateaus across the central Pacific Ocean between 135 and 115 million years ago.
 - The Ontong-Java plateau (twice the area of Alaska and 40 km thick).
- The eruptions could have released enough CO₂ to raise the atmospheric concentration to 20 times the preindustrial value.

Modeling past Global Changes

- Paleoclimatic reconstructions offer a means of testing the accuracy of climate models.
- We can test, or "validate," these climate simulations by comparing the model results against independent geologic evidence.
- The results of the model simulation are generally consistent with the paleoclimatic data assembled by geologists.

Link Between GCM and Tectonics

- New discovery in last decade
- Erosion enhances uplift
 - Not just case of wearing down mountain
 - Mountains respond to climate
- Isostatic adjustment due to erosion
 - Valleys get deeper, ridges rise
 - Explains Himalaya on edge of Tibetan Plateau
- Mountain ranges change atmospheric circulation