LABORATORY 2 - SEA FLOOR SPREADING

OBJECTIVES: Use Marine Magnetic Anomaly patterns in interpreting the timing and nature of sea floor spreading in the world's oceans

Several questions can be asked about the process of seafloor spreading. How temporally stable is the process - are spreading rates constant or nearly constant over geologic time spans? Is the process symmetric - are the same amounts of new lithosphere created on both sides of a spreading ridge? Are changes in spreading rates coincident globally? Were spreading rates similar to current rates when the oldest preserved lithosphere formed?

EXERCISE: Determine spreading rates across several ridge/ocean basins. Do this by selecting a profile across three regions: (1) the south Atlantic; (2) the southern Indian Ocean between Australia and Antarctica; and (3) across the old ocean basin with the M anomalies in the western Pacific. For all profiles complete the following:

1. Use the magnetic anomaly position and the reversal time scale to construct *detailed* distance (from ridge or inferred ridge) vs age plots for all profiles. Use all identifiable anomalies. Use the chronology given here rather than that shown on the map.

Note: The map is a Mercator projection. As a global scale map, the conversion from map coordinates (x and y in millimeters measured on the map) to latitude is not linear. See separate notes for Mercator projection information.

2. Determine 'half-spreading' rates from your plots. More than one line segment may be required. Record this information on the plots.

3. Prepare a summary of the spreading episodes for each profile, including (but not limited to) time of initiation of spreading, periods of fast and slow spreading, symmetric or asymmetric spreading, and any other details you deem interesting or important.

4. Compare the various profiles. Comment on appearance of any synchronous behavior among the various ridge systems. Is there a global response to changes in spreading at one ridge system? Was spreading during the time of the M anomalies similar to more recent periods of spreading?

Note: All plots and graphs should be accurately plotted (graph paper or computer). Plots that are unlabeled (Titles, axes, curves) will not be considered in evaluating the lab. Use **tables** to collect and present the raw and processed data.

Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic

6094

CANDE AND KENT: REVISED GEOMAGNETIC POLARITY TIMESCALE

Normal Polarity	Polarity	Normal Polarity	Polarity
Interval, Ma	Chron	Interval, Ma	Chron
0.000 - 0.780	C1n	33.058 - 33.545	C13n
0.990 - 1.070	Clr.1n	34.655 - 34.940	C15n
1.770 - 1.950	C2n	35.343 - 35.526	C16n 1n
2.140 - 2.150	C2r.1n	35.685 - 36.341	C16n 2n
2.581 - 3.040	C2An.1n	36.618 - 37.473	C17n 1n
3.110 - 3.220	C2An.2n	37.604 - 37.848	C17n.7n
3.330 - 3.580	C2An.3n	37 920 - 38 113	C17n.2n
4.180 - 4.290	C3n.1n	38 426 - 39 552	C18n 1n
4.480 - 4.620	C3n.2n	39 631 - 40 130	C18n.11
4.800 - 4.890	C3n.3n	41 257 - 41 521	C100.20
4.980 - 5.230	C3n.4n	42 536 - 43 789	C1911
5.894 - 6.137	C3An.1n	46 264 - 47 906	C2011
6.269 - 6.567	C3An.2n	49 037 - 49 714	C2111
6.935 - 7.091	C3Bn	50 778 - 50 946	C22n 1n
7.135 - 7.170	C3Br 1n	51 047 51 743	C230.10
7.341 - 7.375	C3Br.2n	52 364 52 663	C23n.2n
7.432 - 7.562	C4n.1n	52,504 - 52,005	C24n.1n
7.650 - 8.072	C4n 2n	52 902 52 247	C24n.2n
8.225 - 8.257	$C4r \ln 2h$	55 004 56 201	C24n.3n
8.699 - 9.025	C4An	57 554 57 011	C25n
9.230 - 9.308	C4Ar ln	57.534 - 57.911 60.020 - 61.276	C20n
9 580 - 9 642	C4Ar 2n	62 400 62 624	C2/n
9 740 - 9 880	C5n ln	62.499 - 63.034	C28n
9 9 20 - 10 949	C5n 2n	03.9/0 - 04./45	C29n
11.052 - 11.099	C5r.1n	05.578 - 07.010	C30n
11 476 - 11 531	C5r.2n	07.735 - 08.737	C3In
11 935 - 12 078	C5An 1n	71.071 - 71.338	C32n.1n
12.184 - 12.070	C5An 2n	71.587 - 73.004	C32n.2n
12.104 - 12.401	C5Ar ln	73.291 - 73.374	C32r.1n
12.070 - 12.700	C5Ar 2n	/3.619 - /9.0/5	C33n
12.775 - 12.019 12 991 - 13 139	C5AAn	83.000 -118.000	C34n
13302 - 13510	C5APa		
13.302 - 13.310 13.703 - 14.076	C5ACn	Table 3. Revised Cryptochrons	Identified in Polaria
14.178 - 14.612	C5ADn	Chrons C1 to C13 and C24 to C2	28
14 800 14 888	C5Pn 1n		
14.800 - 14.888	C5Bn 2n	Interval Ma	Cryptochron
16 014 16 203	C5Cn 1n		
16 3 7 16 499	C5Cn 2n	0 402 0 504	C1 1
16 556 16 726	C5Cn 3n	1 201 1 211	ton-1
17 277 17 615	C5Cn.5n	1.201 - 1.211	*CIr.2r-In
19 291 19 791	CSEn	2.420 - 2.441	C2r.2r-1
10.201 - 10.701 10.048 - 20.121	CSER		C4r.2r-1
20.518 - 20.131	C6An 1n		C5n.2n-1
20.310 - 20.723	C6An 2n	10.440 - 10.470	C5n.2n-2
20.330 - 21.320 21.768 - 21.850	C6A Ån	10.710 - 10.720 17 975 17 952	Con.2n-3
21.700 - 21.0J9 22.151 22.249	CGAA - 1-	1/.023 - 1/.033	CSDr-1
22.131 - 22.240	C64 4- 2-	24.4/J - 24.480 35 228 05 254	Cor-1
22.4J7 - 22.47J 22.500 - 22.47J	CGAR 1-	23.338 - 23.334	C7r-1
22.300 - 22.730	COBR.IN	20.34/ - 20.359	C8n.2n-1
44.004 - 43.007 72.353 - 72.525	C(D)1.2n	27.389 - 27.407	C9n-1
23.333 - 23.333 23.277 - 23.000	C(C) 2-		C9n-2
23.0// - 23.8UU 23.000 - 24.119	C6Cn.2n	28.118 - 28.130	C9r-1
23.777 - 24.118 24.720 - 24.791	CoCn.3n	29.023 - 29.037	C10r-1
24./JU - 24./81	C/n.1n	29.180 - 29.193	C10r-2
24.833 - 23.183	C/n.2n	30.278 - 30.292	Cllr-1
23.490 - 23.048	C/An	31.224 - 31.243	C12r-1
25.823 - 25.951	Con.In	31.473 - 31.482	C12r-2
25.992 - 26.554	C8n.2n	31.844 - 31.863	C12r-3
27.027 - 27.972	C9n	32.018 - 32.027	C12r-4
28.283 - 28.512	Cl0n.ln	32.187 - 32.197	C12r-5
28.578 - 28.745	C10n.2n	32.446 - 32.465	C12r-6
29.401 - 29.662	Clln.ln	32.602 - 32.612	C12r-7
29.765 - 30.098	Ciln.2n	32.772 - 32.782	C12r-8
30.479 - 30.939	C12n	33.266 - 33.283	C13n-1

Fig. 5.10. Geomagnetic polarity time scale with magnetic anomaly numbers for the past 160 N using the combined scales of Kent and Gradstein (1986) and Cande and Kent (1995).