Ice Dynamics II: Glacier Sliding and Hydrology

ESS431: Principles of Glaciology
ESS505: The Cryosphere

Monday, 10/22 – Knut Christianson
1) Accumulation (Atmosphere)
2) Accumulation (in situ)
3) Ablation
4) Balance (dynamics)
Ice Avalanche

September 20, 2002, North Ossetia, (Russian Caucasus)

- Part of Maili Glacier broke off and avalanched, ~100 km per hour
- 20×10^6 tonnes of ice, rock, mud swept ~16 km through Karmadon Gorge
- ~140 fatalities, village of Nizhny Karmadon destroyed
July 3rd, 2016
Today’s Objectives:

Basal Sliding:
- What are the controls on basal sliding? How do they compare with the physics of internal deformation?
- What are the two fundamental processes that allow sliding past bedrock obstacles? What is the role of water in each process?

Hydrology:
- How is water transported in a glacial system?
- How does the amount of water in the system affect the water transport regime?
Importance of Sliding

Observed Surface Speed

Deformation Speed Only
Importance of Sliding

Internal deformation u_d is always present

Sliding contribution to ice transport:

\[u_s = 0 \times u_d \quad \text{e.g. frozen bed} \]
\[u_s = 10^N \times u_d \quad \text{e.g. glacier surges and ice streams} \]

N can be as high as ~ 3

In “typical” temperate mountain glaciers, it is commonly supposed that

\begin{align*}
\text{Ice transport due to sliding} & \approx \text{Ice transport due to internal deformation}
\end{align*}
What’s it like under a glacier?

Smooth clean bedrock

Frozen ground (tundra, gravel, till)

Soft marine mud

Glacial till – unsorted gravel, mud
 • Soft, wet deformable
 • Hard, overconsolidated
 • Wet, thawing (geothermal flux, frictional heat)
 • Wet, freezing (ice fingers into pores)
Tombstone Model

(J. Weertman, 1957)
A simple starting model for sliding

1) Regelation

2) Enhanced Deformation

Regelation
Tombstone Model

(J. Weertman, 1957)
A simple starting model for sliding

If ice is not accelerating off the mountain (i.e. an ice avalanche), then there must be a restraining force to balance the down-slope driving shear stress

\[\tau = \rho g h \sin(\theta) \text{ acting on area } \lambda \times \lambda. \]

\[h = \text{ice thickness} \]
\[\theta = \text{surface slope} \]

Force = stress × Area on area \(\lambda \times \lambda \):

\[F = \tau \lambda^2 \]

• But there is no basal shear stress on slippery bed …
Tombstone face

• Force $\tau \lambda^2$ is supported entirely by uphill face of bump
• This face has area L^2
• Pressure (stress) on that face is $P = \tau \lambda^2 / L^2$ (force/Area)

High pressure depresses freezing point

• $\Delta T = c P$
• $c = -7 \times 10^{-8} \, ^\circ\text{C Pa}^{-1}$
 (slope on phase boundary)
Ice melts
Heat flow
Water flow
Ice flow
P high
T_m low
Slippery bed

Regelation sliding

P low
T_m high

Δx in Δt

Water freezes

D_x in D_t
Can ice slide past a Bump?

• How fast ice can move past bump depends on how fast heat can get back through bump.
• Heat flux Q depends on temperature gradient $\Delta T/L$ (Fourier’s Law).

$Q = -K \frac{\Delta T}{L}$

$K = \text{rock conductivity } \cong 2 \text{ W m}^{-1} \text{ deg}^{-1}$
$L = \text{rock scale length (m)}$
$\Delta T = c \tau \frac{\lambda^2}{L^2}$
Sliding Speed by Regelation

In time Δt, heat flux Q (W m$^{-2}$) delivered to Area = L^2 of rock face can melt a volume V of ice given by: $V = L^2 \times \Delta x$ \hspace{1cm} (1)

$$V = \frac{\text{(energy delivered)}}{\text{(energy to melt 1 m}^3\text{)}}$$

$$V = \frac{(Q \times L^2 \times \Delta t)}{(\rho H)} \hspace{1cm} (2)$$

H = heat of fusion = 331 kJ/kg

ρ = ice density = 900 kg/m3

Equating (1) and (2) and using

$$Q = \left(-\frac{Kc \tau}{L}\right)\left(\frac{\lambda^2}{L^2}\right)$$

$$U_{slide} = \frac{\Delta x}{\Delta t} = \frac{Kc \tau}{\rho HL} \frac{\lambda^2}{L^2}$$
Example of sliding speed

\[U_{\text{slide}} = \frac{Kc \tau \lambda^2}{\rho H L L^2} \]

If \(L = 0.02 \text{ m} \)
\(\lambda = 0.2 \text{ m} \)
\(\tau = 10^5 \text{ Pa} \)

\[U_{\text{slide}} = \frac{2 W \text{ m}^{-1} \text{ deg}^{-1} \times 10^{-8} \text{ deg} \text{ Pa}^{-1} 10^5 \text{ Pa}}{900 \text{ kg} \text{ m}^{-3} 3.3 \times 10^5 \text{ J kg}^{-1} 0.02 \text{ m}} \times \frac{0.2^2 \text{ m}^2}{0.02^2 \text{ m}^2} \]

\[\approx 2 \times 10^{-7} \text{ m s}^{-1} \]

\[\approx 2 \times 10^{-7} \text{ m s}^{-1} \times 3 \times 10^7 \text{ s yr}^{-1} \approx 6 \text{ m yr}^{-1} \]

How will sliding speed change if bumps are bigger?
Regelation Demonstration – on Friday
Enhanced Creep
Can ice flow around bumps?

\[\sigma_x \text{ is compressive stress in ice upstream of bump} \]

- Ice “knows” that bump is there for a distance ~L_0 upstream
- One large bump stresses a bigger volume of ice compared to many smaller faces with the same total restraining face area (as required for force balance)

Ice deforms in response to stress (Glen Flow Law)

\[\dot{e}_x = A \sigma_x^3 \]
Strain near bumps

Rate of shortening of a line upstream from bump

\[\dot{\epsilon}_x = \left(\frac{\Delta L}{L} \right) \frac{1}{\Delta t} \]

\[U_{\text{slide}} = \frac{\Delta L}{\Delta t} = L \dot{\epsilon}_x = L A \sigma_x^3 \]

We used Glen flow law:

Ice can move faster around larger bumps
Regelation-Deformation Tradeoff

• Regelation allows ice to slide past small bumps easily.
• Enhanced strain gets ice past large bumps easily.
• At some intermediate scale \(L = L_c \), both processes are equally effective (or ineffective).
Controlling-Obstacle Size

- Actual sliding speed is sum of 2 processes
- At $L=L_c$, U_{slide} is minimum
- Bedrock bumps with size L_c control sliding speed.

What assumptions are built into this concept?
Flow on Nisqually Glacier

Can Tombstone Model explain these data?

Water is very important

• Meltwater from surface
• Meltwater from the bed

• Drainage through till?

• What does water do in a glacier?
Bed Separation and Sliding

\[P_w < P_{sep} \]
- \(S = 0 \)
- Cavities cannot form

\[P_w > P_{sep} \]
- \(S > 0 \)
- Cavities can open
Glacier moves faster when water level rises in a hole to bedrock

• Why?

(Almut Iken)
Sliding and Water Pressure

Glacier moves faster when water level rises in a hole to bedrock

- Borehole is acting as a manometer; water level tells us about water pressure at the base of the glacier

(Almut Iken)
Sliding and Water Pressure - Storglaciaren

(Hanson et al., 1998. *J. Glaciol.* 44(147) 359)
Sliding and Soft Beds

Factors:
- Thickness \(h \) and composition of material (till viscosity \(\eta \))
- Pore-pressure distribution

\[
U_b = \frac{h}{\eta} \sigma_b
\]

But … what is viscosity \(\eta \) ???
Deformable Bed in Iceland

Breiðamerkerjökull, Iceland

• Segmented rods left in subglacial till were moved forward by glacier over 10 day interval.

(Benn and Evans, *Glaciers and Glaciation*, adapted from Boulton and Hindmarsh)
Rock Friction

Rocks pressed against bed

Water pressure reduces rock-to-rock friction

Geothermal flux

Pressure difference
Rock Friction – Till Dilation

• Till must swell so that clasts can move past one another

• Water at high pressure helps to dilate till

(Hooke, *Fundamentals of Glacier Mechanics*; Benn and Evans, *Glaciers and Glaciation*)
Questions, Questions, Questions …

1. Can speed \(U_d \) due to internal deformation change rapidly?
 • Consider hours, days, seasons.

2. Can sliding speed \(U_b \) change rapidly, e.g. in a few hours?
 • Consider Tombstone model, Deforming-till model, (others?)

3. You are measuring the surface speed \(U_s \) of a pole in the center of a glacier in the Cascades. You just had the hottest 3 days of the summer. What might happen to \(U_s \)?
Today’s Objectives:

Basal Sliding:
- What are the controls on basal sliding? How do they compare with the physics of internal deformation?
- What are the two dominant processes that allow sliding past bed features? What is the role of water in each process?

Hydrology:
- How is water transported in a glacial system?
- How does the amount of water in the system affect the water transport regime?
Glacial Outburst Flooding

- South Tahoma Glacier, Mount Rainer, WA, USA

- Since 1985, over 30 have occurred
Streams on Glaciers

Water can melt channels into glacier ice
• Lower albedo than ice
• Dissipating potential energy as it loses elevation

Rivers on the Greenland Ice Sheet

Vibeke Gletscher, East Greenland

Hambrey and Alean, *Glaciers*.

~300 m
Moulins

Water will find a way to move down into a glacier
• a supraglacial stream will typically flow into a crevasse
We can see the water coming out at a glacier terminus
• But where has it been?

Fox Glacier, NZ.
Hambrey and Alean. *Glaciers.*
Water can stop flowing in winter.

- Where does a tunnel lead?
- What happens over the winter?
Tunnels in Winter

Water can stop flowing in winter
• where does a tunnel lead?
• What happens over the winter?

Matanuska Glacier.
Andersen and Borns.
Ice Age World.
Tunnels Transporting Water

Rothlisberger (1972) Nye (1976)

In steady state, higher water pressure ↔ lower water flux (in smaller tunnel)
Pressure in Steady Tunnels

Two competing influences:
- Creep closure of the tunnel, through ice deformation
- Tunnel growth, through melting from turbulent heat transfer

Creep Closure:
Pressure in Steady Tunnels

Two competing influences:
- Creep closure of the tunnel, through ice deformation
- Tunnel growth, through melting from turbulent heat transfer

Creep Closure:
\[\dot{\epsilon} = A\sigma^3 \]
\[\frac{1}{r} \frac{\Delta r}{\Delta t} \approx A(p_i - p_w)^3 \]
\[\frac{\Delta r}{\Delta t} \propto \Delta p^3 \]
\[\frac{\Delta V}{\Delta t} \propto 2\pi r \cdot r\Delta p^3 \]
Pressure in Steady Tunnels

Two competing influences:
- Creep closure of the tunnel, through ice deformation
- Tunnel growth, through melting from turbulent heat transfer

Turbulent Melting:

\[
\frac{\Delta V}{\Delta t} \propto \frac{\Delta E}{\Delta t} \propto Q_w
\]

\[
Q_w = \pi r^2 u
\]

\[
u \propto r^{2/3} \text{ - (pipe flow theory)}
\]

\[
\frac{\Delta V}{\Delta t} \propto r^{8/3}
\]
Pressure in Steady Tunnels

Two competing influences:
- Creep closure of the tunnel, through ice deformation
- Tunnel growth, through melting from turbulent heat transfer

\[
\Delta V \propto r^2 \Delta p^3
\]
\[
\Delta \propto r_{3/9}^{2/9}
\]
\[
\Delta \propto Q^{1/12}
\]

As radius grows, \(\Delta \) grows, \(p_w \) falls
Under-pressurized conduit

It did not survive when water flow stopped …

(Hooke, *Fundamentals of Glacier Mechanics*)
Linked Cavities

(Hooke, *Fundamentals of Glacier Mechanics*)
Water in Linked Cavities

Ice Flow
(sliding)

Inward flow
of ice

Higher water pressure
↔ higher water flux (transport)
Questions, Questions, Questions …

1. Why do some glaciers speed up in late winter or early spring before there has been much melting?
 • Why do they slow down in mid-summer when melting is at its peak?

2. Describe the pressure gradient in the conduit.
 • Which way does the water flow?

3. Water is bubbling out of a crack in a glacier. The water is at the melting temperature.
 • Some ice crystals are swept upwards by the flow. What has been happening to them on the way up?
Seasonal Water Cycle

Early winter: little meltwater, low water pressure
- Tunnels close, linked cavities survive

Late winter: seepage, basal melt
- Water pressure rises slowly
- Sliding increases slowly

Spring: high meltwater flux enters cavities
- Water pressure rises
- Sliding increases slowly

Early summer: too much water overloads cavities
- Surface rises
- Cavities join, tunnels start to form
- Sliding hits its peak

Mid-summer: water flows in low-pressure tunnels
- Basal water drains
- Sliding slows down
Seasonal Water Cycle

Spring Speedup

Autumn Speedup

Water Pressure Variations on Bench Glacier, Alaska, 2002-2003 (Fudge et al, 2008)
Recent work suggests large volumes of transient water can move under the ice.
- ~2 km3 moved ~300 km beneath the ice sheet between 1996 and 1999.

Water moving in Antarctica

Large volumes of transient water can move under the ice, as detected by changes in surface height seen by satellite altimeters e.g. (ERS-1/ERS-2).

- subglacial lakes - Yellow dots
- - white dashes
- L sites –lowering
- U sites - rising
Surface Height Changes over Subglacial Lakes

As L1 drains, U1, U2, and U3 are filling up.

Subglacial Lakes: Like Beneath the Ice

A microbial ecosystem beneath the West Antarctic ice sheet

Brent C. Christner¹, John C. Priscu², Amanda M. Achberger¹, Carlo Barbante³, Sasha P. Carter⁴, Knut Christianson⁵†, Alexander B. Michaud², Jill A. Mikucki⁶, Andrew C. Mitchell⁷, Mark L. Skidmore⁸, Trista J. Vick-Majors⁹ & the WISSARD Science Team‡

Christianson et al. (2012), *EPSL 331-332*, 237.
Horgan et al. (2012), *EPSL 331-332*, 201.
Sliding Summary

- Negligible sliding if base is cold
- Sliding is typically comparable to internal deformation in temperate valley glaciers
 but
- Sliding can be up to 500-1000 m a\(^{-1}\) over slippery beds of large glaciers (e.g. West Antarctic Ice Streams)

Sliding depends on water

- Lubrication
- Regelation
- Bed separation (high water pressure)

Water can flow

- Through distributed linked cavities (high-pressure system)
- Through tunnels (low-pressure system)
- Through subglacial sediments

Sliding can change rapidly with changing bed conditions