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ABSTRACT
A stratigraphic synthesis of dozens of deep-sea cores, most of 

them overlooked in recent decades, provides new insights into deep-
sea turbidites as guides to earthquake and tsunami hazards along the 
Cascadia subduction zone, which extends 1100 km along the Pacific 
coast of North America. The synthesis shows greater variability 
in Holocene stratigraphy and facies off the Washington coast than 
was recognized a quarter century ago in a confluence test for seismic 
triggering of sediment gravity flows. That test compared counts of 
Holocene turbidites upstream and downstream of a deep-sea channel 
junction. Similarity in the turbidite counts among seven core sites pro-
vided evidence that turbidity currents from different submarine can-
yons usually reached the junction around the same time, as expected 
of widespread seismic triggering. The fuller synthesis, however, shows 
distinct differences between tributaries, and these differences suggest 
sediment routing for which the confluence test was not designed. The 
synthesis also bears on recent estimates of Cascadia earthquake mag-
nitudes and recurrence intervals. The magnitude estimates hinge on 
stratigraphic correlations that discount variability in turbidite facies. 
The recurrence estimates require turbidites to represent megathrust 
earthquakes more dependably than they do along a flow path where 
turbidite frequency appears limited less by seismic shaking than 
by sediment supply. These concerns underscore the complexity of 
extracting earthquake history from deep-sea turbidites at Cascadia.

INTRODUCTION
Twenty-first century earthquakes are projected to take millions of 

lives (Holzer and Savage, 2013). Efforts to reduce the losses employ esti-
mates of earthquake sizes and recurrence intervals. Paleoseismology has 
improved such estimates by extending earthquake histories thousands of 
years into the past.

Turbidite paleoseismology is based on observations that earthquakes 
are among the triggers for sediment gravity flows that evolve downslope 
into turbidity currents, and that shaking may cause slopes to fail in the 
same few minutes at sites widely separated along fault strike, a coincidence 
not expected of other potential triggering mechanisms (Talling, 2014). If 
turbidites indicative of earthquakes can be positively identified and cor-
related, their geographic extent would provide a measure of earthquake 
size, and their repetition would represent earthquake recurrence intervals. 
Settings shown to be conducive to turbidite paleoseismology include lakes 
in Switzerland and Chile (Strasser et al., 2013; Moernaut et al., 2014). Less 
favorable settings include parts of the continental slope off Sumatra, where 
great earthquakes rarely trigger turbidity currents (Sumner et al., 2013).

Interpretations of deep-sea turbidites are guiding hazard assessment 
at the Cascadia subduction zone, which extends 1100 km along the North 
American Pacific coast (Fig. 1). The study of turbidite paleoseismology 
began there with a confluence test for seismic triggering of turbidity cur-
rents (Fig. 2A). Holocene sequences of deep-sea turbidites were found to 
be similar above and below a confluence of deep-sea channels, and this 
similarity was ascribed to abyssal merger of turbidity currents that had 
been triggered simultaneously in different submarine canyons (Adams, 
1990). Today, deep-sea turbidites provide the main basis for a proposed 

10,000 yr Cascadia history that specifies 19 full-length ruptures and 
a similar number of shorter southern ruptures (Goldfinger et al., 2012) 
(Fig. 1B). This inferred history underpins tsunami scenarios (Priest et al., 
2010), fault-energy budgets (Goldfinger et al., 2013b), and giant earth-
quake probabilities (Kulkarni et al., 2013).

In this paper, we reappraise deep-sea turbidites as guides to Casca-
dia earthquake hazards. We bring together data from legacy cores off the 
Washington coast that previous paleoseismological studies overlooked. 
We draw on physiography, stratigraphy, and sedimentology in disputing 
the confluence test and in questioning the turbidite basis for influential 
estimates of earthquake size and recurrence.

PHYSIOGRAPHY
Cascadia’s largest network of deep-sea channels originates in sub-

marine canyons that notch Washington’s continental shelf (Figs. 1–31). 
The upper canyons debouch onto a lower continental slope ribbed with 
Pleistocene anticlines (Adam et al., 2004). The northern thalwegs from 
Nitinat, Juan de Fuca, and Quillayute Canyons drain into Juan de Fuca 
Channel, which heads at the apex of Nitinat Fan and descends its eastern 
edge (Fig. 3A). Southern thalwegs emanating from Quinault, Grays, and 
Willapa Canyons merge on the lower slope. Their shared outlet reaches 
an abyssal confluence with Juan de Fuca Channel at the head of Cascadia 
Channel, which drains southward between Nitinat and Astoria Fans and 
continues westward through the Blanco Fracture Zone. The network is 

1Figure 3 is provided as an oversize insert.
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R.—river. B: Summary of earthquake history postulated by Goldfin-
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a palimpsest, shaped during Pleistocene glaciations and selectively over-
written in the Holocene (Barnard, 1978, p. 110).

Turbidity currents were not always confined to the network’s thal-
wegs. Spillover paths to lower Juan de Fuca Channel are marked by abys-
sal plunge pools and sediment waves west of the Columbia River (Fig. 
3A), a source of Pleistocene hyperpycnal flows (Normark and Reid, 
2003). An upper reach of Cascadia Channel transmitted Holocene flows 
that overtopped its banks (Griggs and Kulm, 1970).

STRATIGRAPHY

Data Sources and Syntheses
Cascadia turbidite paleoseismology has roots in sedimentological 

studies that were unconcerned with earthquakes. Three of these studies 
defined deep-sea stratigraphy off the Washington coast, in the south near 
the head of Cascadia Channel (Griggs, 1969), in the north on upper Nitinat 
Fan (Carson, 1971), and along the continental slope (Barnard, 1973). We 
draw on this coverage more fully than did Adams (1990) and Goldfinger 
et al. (2012), who used data from one-quarter of the legacy cores in Figure 
3 and overlooked the legacy cores off northern Washington.

Supporting information for Figure 3 includes an extended explana-
tion (Table DR1 in the GSA Data Repository2), a core list (Table DR2), 
volcanic-ash data (Table DR3), notes on inferred flow paths (Table DR4), 
and logs of cores on Nitinat Fan and the Washington slope (Figs. DR1 
and DR2). An index map to cores keys them by source (Fig. DR3). Figure 
DR4, showing plunge pools west of Willapa Bay, includes EM 122 mul-
tibeam bathymetry and acoustic backscatter data derived from Holbrook 
et al. (2012). Figure DR5 schematically relates findings in Figure 3 to the 
confluence test of Adams (1990).

North-South Stratigraphic Contrasts
Holocene stratigraphy off Washington differs between north and 

south, both on the continental slope and on the adjacent abyssal plain. 
The differences involve numbers of successive turbidites and abundance 
of reworked Mazama ash. Erupted sometime between 7500 and 7800 yr 
ago, Mazama ash was delivered to the sea by the Columbia River (Peter-
son et al., 2012) and to the deep sea by turbidity currents (Nelson et al., 
1968). Offshore, the ash serves as a tracer of Columbia River sediment 
(Fig. 3D), and its lowest stratigraphic occurrence provides a widely used 
stratigraphic datum (Figs. 3A, 3B).

Off northern Washington, post-Mazama turbidites are few and volca-
nic ash contents are low (Figs. 3A, 3D). Core logs and supporting analyses 
(Carson, 1971; Barnard, 1973; Goldfinger et al., 2012) are available for 11 
sites within or near Juan de Fuca Canyon and upper Nitinat Fan: 63-18, 
63-19, 63-20, 39-8, 39-9, 29-23, 39-26, 39-27, M9907-5, 29-25, and 39-7. 
The cores at all these sites show six or fewer post-Mazama turbidites. At 
M9907-5, where the likely number is between 3 and 6, Goldfinger et al. 
(2012, p. 42–43) counted 13 by positing, implausibly, that turbidites high 
in the piston core overlie the uppermost turbidites of the associated grav-
ity core (details in Table DR4, path N1). No reported ash content exceeds 
10% at any of the 11 sites. Only from site 63-17, between Quillayute and 
Quinault Canyons, did a sample from the northern Washington slope yield 
an ash content of 10%–35%.

Off southern Washington, post-Mazama turbidites are comparatively 
numerous, and reworked Mazama ash is widely abundant. These char-
acteristics prevail on the slope west and south of Quinault Canyon, and 
along channels on the adjoining abyssal plain: the lower reaches of Juan 
de Fuca Channel, the nearby outlet from southern canyons, and Cascadia 
Channel (Fig. 3). Some of the sequences contain a dozen or more post-
Mazama turbidites (yellow numerals, Fig. 3A), and in many sequences the 
maximum volcanic ash contents exceed 35% (Figs. 3A and 3B; individual 
analyses from five slope cores, Fig. 3D). Superimposed on these shared 
properties is pronounced variability in turbidite thickness, grain size, and 
bedding, and in the thickness of intervening hemipelagic clay, near the 
head of Cascadia Channel (Fig. 3C).

SEDIMENTOLOGY

Sediment Supply to Submarine Canyons
These north-south contrasts in deep-sea stratigraphy parallel trends 

in Holocene sediment supply on the Washington continental shelf. In the 
north, the Holocene transgression isolated Juan de Fuca Canyon from 
sediment of the Fraser River (Williams and Roberts, 1989). Reworking 
of glacial drift on the ocean floor accounts for much of the Holocene 
deposition in the Strait of Juan de Fuca and on the adjoining continental 
shelf (Herzer and Bornhold, 1982; Hewitt and Mosher, 2001). From the 
south, by contrast, Columbia River detritus has produced a mid-shelf silt 
of Holocene age that exceeds 20 m in thickness west of Willapa Bay and 
thins to the northwest (Fig. 3A). Upper reaches of Willapa and Quinault 
Canyons indent this mid-shelf silt (Nittrouer et al., 1979; Wolf et al., 
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2GSA Data Repository item 2014286, Tables DR1–DR4 and Figures DR1–DR5, is available online at www.geosociety.org/pubs/ft2014.htm, or on request from 
editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
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1999), and Quinault Canyon is known to receive modern shelf sediment 
during storms (Carson et al., 1986).

Flow Paths to the Lower Juan de Fuca Channel
These congruent patterns in turbidite stratigraphy and sediment 

supply cast doubt on a longstanding assumption about the provenance 
of Holocene turbidites in lower Juan de Fuca Channel, on the abyssal 
plain off southern Washington (location in Fig. 2C). Adams (1990) and 
Goldfinger et al. (2012) assumed that these turbidites represent flows that 
originated in canyons off northern Washington (paths N1 and N2; Fig. 2A; 
Table DR4). This routing requires flows that deposited few turbidites and 
little Mazama ash on upper Nitinat Fan to have produced numerous turbi-
dites and abundant Mazama ash farther downstream (Fig. 3A).

It is unlikely that numerous flows from northern canyons would have 
bypassed all core sites off northern Washington. Juan de Fuca Canyon is 
lined with dozens of slumps (Carson and McManus, 1969) that subsequent 
Holocene flows have not removed. In contrast, on the southern Washing-
ton slope, erosive flows are evidenced by a scarcity of slumps and by the 
presence of unconformities in canyon thalwegs (at 53-19, M9907-13, and 
63-08), and these features coexist with Holocene turbidites about as numer-
ous and ash-rich as those in lower Juan de Fuca Channel (Figs. 3A and 3B).

We therefore propose that Holocene flows from canyons off the 
southern Washington slope spilled into lower Juan de Fuca Channel (Fig. 
2B, paths S1–S3). The most important of the proposed paths would enable 
flows from upper Quinault Canyon to reach the abyssal plain as far north 
as site 48-8, the northernmost known occurrence of numerous ash-rich 
turbidites in Juan de Fuca Channel. This path, S1, is evidenced by stratig-
raphy and appears consistent with heavy-mineral assemblages.

Holocene flows using path S1 are evidenced by 8 post-Mazama tur-
bidites and abundant ash at 53-14, on the lower slope midway between 
upper Quinault Canyon and Juan de Fuca Channel. To account for these 
turbidites, westward discharge from the upper canyon would continue 
directly across an outside bend at the canyon outlet and would rise ~200 
m from there to pass through a saddle in an anticlinal ridge (Fig. 3A). The 
upper portions of turbidity currents are known to diverge from canyons or 
channels at outside bends (Piper and Normark, 1983). Off California, split 
flows have exited Monterey Canyon 150 m above its floor more than 12 
times in the past 3000 yr (Fildani et al., 2006), and flows have overtopped 
a wall 280 m high at an outside bend of Eel Canyon (Lamb et al., 2008).

Holocene turbidite sand of lower Juan de Fuca Channel contains 
heavy-mineral assemblages consistent with sources on upper Nitinat Fan 
or Vancouver Island (Goldfinger et al., 2013a). However, such assem-
blages are also known from volcanic rocks of the Olympic Mountains 
(Carson, 1971, p. 81) and from surficial sand on the inner shelf north 
of Grays Harbor (Venkatarathnam and McManus, 1973). Furthermore, 
assemblages derived from Vancouver Island may be available for rework-
ing, both along path S1 in Pleistocene turbidites derived from the Cordil-
leran ice sheet and along lower Juan de Fuca Channel in slide debris (Fig. 
3A; Fig. DR4).

Turbidite Facies and Fine-Scale Correlation
Facies variations impede stratigraphic correlation among cores near 

the head of Cascadia Channel (Fig. 3C). The uniformly thin, sand-poor 
turbidites in Juan de Fuca Channel at site 6705-2 contrast with the thick, 
sandy turbidites along the southern thalweg at 6705-4 and 6705-5. The 
core sites nearest the head of Cascadia Channel, 6705-6 and 6508-K1, 
show elements of both.

It has been proposed that sandy units several centimeters thick cor-
relate among cores taken hundreds of kilometers apart in mostly uncon-
nected channels and basins along the Cascadia subduction zone (Gold-
finger et al., 2012). In Pleistocene deposits, turbidite correlations this fine 
have been made along a North Atlantic levee (Hesse, 1995), but are statis-
tically precluded by variable facies on Nitinat Fan (Carson and McManus, 

1971). Facies variability also impedes fine correlations among Holocene 
turbidites near the head of Cascadia Channel (Fig. 3C) and between lower 
Juan de Fuca Channel and lower Cascadia Channel (Atwater and Griggs, 
2012, their figure 5).

PALEOSEISMOLOGY

Confluence Test
The confluence test of Adams (1990) asks whether turbidity currents 

off Washington were triggered regionally by earthquakes or locally by other 
means (Fig. 2A; Fig. DR5A). The regional earthquake hypothesis fails if 
the numbers of post-Mazama turbidites differ greatly among thalweg sites 
above and below the head of Cascadia Channel. In the test design, flows 
from northern canyons aggrade lower Juan de Fuca Channel sites 6705-2 
and 6705-6; flows from southern canyons register on the slope at 53-18 
and downstream at 6705-5; and flows from both north and south reach the 
confluence site 6508-K1 and are capable of reaching Cascadia Channel 
sites 6509-15 and 6609-24 (Figs. 1A, 3A, and 3B). Citing similarities in 
turbidite counts among these 7 sites, Adams (1990) concluded that each 
of 13 post-Mazama earthquakes shook the entire region, north and south.

The previously overlooked cores off northern Washington confound 
this venerable result (Fig. 2B; Fig. DR5B). Regional seismic triggering 
fails a rerun confluence test in which post-Mazama turbidites are few off 
northern Washington (range of 0–6) but numerous off southern Washing-
ton (range of 8–14; Fig. 3). The test design also fails if Holocene flows 
from northern canyons rarely reached lower Juan de Fuca Channel.

Earthquake Size
Geologic dating usually lacks the time resolution to show whether a 

long fault broke as a whole during the seconds or minutes of a single earth-
quake, or whether it ruptured piecemeal in a series of lesser earthquakes 
distributed across days, years, or even decades (Nelson et al., 1995). The 
10,000 yr earthquake history proposed by Goldfinger et al. (2012) seem-
ingly overcomes this ambiguity, because it includes 19 full-length rup-
tures but no instance of serial rupture (Fig. 1B). This inference of long 
ruptures hinges, however, on centimeter-scale turbidite-bed correlations 
in which each correlated bed represents a pulse of seismic shaking that 
was felt during the same few minutes along hundreds of kilometers of the 
subduction zone (Goldfinger et al., 2012, p. 135–136). Correlation this 
exact does not accord with the variable turbidite facies noted above, and it 
would not be expected of earthquake motions that vary along fault strike, 
of slope failures that lag the shaking, or of tributaries of unequal length 
that issue flows at different times (Atwater and Griggs, 2012, p. 13–17).

As interpreted by Goldfinger et al. (2012), Holocene turbidites of the 
lower Juan de Fuca Channel help define rupture length by representing 
megathrust rupture off northern Washington. If, however, these turbidites 
reflect spillover from canyons off southern Washington, they do not reli-
ably show whether the fault broke north of those canyons.

Earthquake Recurrence
Submarine mass movements need not correspond dependably with 

earthquakes (Völker et al., 2011; Goldfinger et al., 2012, p. 138; Sumner 
et al., 2013). Off northern Washington, Holocene turbidites from Juan de 
Fuca Canyon compare to less than one-third of the 19 Holocene ruptures 
posited to have extended beneath it (Figs. 1B and 3A). Conversely, off 
southern Oregon, turbidites outnumber megathrust earthquakes at a local-
ity where the region’s most recent megathrust earthquake (A.D. 1700) pre-
dates three turbidites of unknown cause (Goldfinger et al., 2013c, p. 2141).

In the earthquake history of Goldfinger et al. (2012), the Cascadia 
plate boundary breaks twice as often off northern California and southern 
Oregon as off Washington and British Columbia (Fig. 1B). This estimate 
requires one-to-one correspondence of turbidites and earthquakes off 
Oregon and Washington (Goldfinger et al., 2012, p. 92, 112), in contrast 
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with the likely turbidite deficit off northern Washington and the observed 
surplus off southern Oregon.

CONCLUSIONS
Holocene turbidity currents have partly overwritten a Pleistocene chan-

nel network off Washington. The resulting turbidite stratigraphy reflects lati-
tudinal differences in Holocene sediment supply to canyon heads and proba-
ble Holocene spillover from canyons on the southern Washington slope. The 
stratigraphy has provided important estimates of earthquake magnitudes and 
recurrence intervals, but these estimates hinge on simplifying assumptions 
about flow paths, stratigraphic correlation, and record completeness. The 
way forward requires renewed attention to sediment supply, flow initiation, 
downstream pathways, and uncertainty in turbidite correlations.
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