Earth's Energy Budget and Heat Flow **Reading: Fowler Chapter 7 (Heat)**

Note that we sorted through a collection of rocks

The green ones were "ultramafic"

- high iron and magnesium relative to silica (SiO₂)
- from the mantle

The dark rocks were "mafic"

- more silica
- basalt and gabbro
- typical of oceanic crust

The lighter "salt and pepper" rocks were higher still in silica

- more representative of continental crust
- granite and andesite for large crystal sizes
- rhyolite dacite for smaller crystal size (extrusive volcanic)

Noted the relationship associated with partial melting and chemical fractionation – both for major elements and minor (trace) radiogenic elements.

Geothermal Flux: 42 x 10¹² W (80 mW/m²) compare to:

- 1. Commercial power plant (10⁹ W)
- 2. Sum of all earthquakes (10¹¹ W)
- 3. Solar irradiance (2 x 10¹⁷ W 400 W/m²)

Sources:

Heat production from radiogenic elements Secular cooling

Heat Production

U ppm	Mantle .03	"Basalt" .18	"Granite"	half life U ²³⁸ 4.5Ga
10 ⁻¹⁰ W/kg	.03	.18	4	U^{235} 0.7Ga
Th ppm 10 ⁻¹⁰ W/kg	.1	.4-2.5 .17	15 4	14 Ga
K ⁴⁰ -A ⁴⁰ (%) 10 ⁻¹⁰ W/kg	.03 .01	.2 -1.2 .14	3.5 1.3	1.25 Ga
totals	.07 .03	.3 – 2 .15	9 2.5	$x~10^{-10}~W/kg\\\mu W/m^3$

Mass of mantle $4x10^{24}$ kg \rightarrow $28x10^{12}$ W Mass of crust $2.8x10^{21}$ kg \rightarrow $5.5x10^{12}$ W (13% of total from 0.5% of mass)

Sum is about 80% of total -> 20% secular cooling? Significant assumptions in this analysis – one finds a large range of estimates for this

Urey Ratio=Internal Heat Production /Surface Heat Flux ~ 0.2 at present: Korenaga, 2008

When mantle is melted to form basalt, the incompatible elements, including U, Th, and K go into the melt and ultimately remain in the crust, enriching the crust and depleting the upper mantle.

Heat Transport

Conduction

Convection/Advection

Radiative – has short mean free path in mantle so can be modeled as conduction

Conduction: heat flux Q (heat/unit time/unit area) is proportional to temperature gradient:

$$Q = -k \frac{dT}{dz}$$

k is thermal conductivity:

Metals – 10^2 W/m/°C Rocks – 1 to 10 W/m/°C (2-4 most common)

For average values : $\frac{dT}{dz}$ is 30 – 40 °C/km near Earth's surface

(note absurd results for even modest extrapolation - 4000 °C in 100 km)

If the heat flux varies in the z direction, the heat entering and exiting a volume with area A and height dz will differ and the volume will heat up: The heat added to that volume per unit time is: -A dz dQ/dz = A dz k d^2T/dz^2 which will cause the heat in that volume to change at the rate of: mass in volume * C_p * $dT/dt = \rho A dz C_p dT/dt$ so conduction

leads to diffusion equation (equating the terms above): $\frac{dT}{dt} = \frac{k}{\rho C_p} \frac{d^2T}{dz^2}$

 C_p = specific heat: heat needed to raise 1 kg by 1 deg C

Diffusivity =>
$$\kappa = \frac{k}{\rho C_p}$$

Note units: m²/s and typical value O(10⁻⁶ m²/s)

Fundamental result of any solution is that

$$\tau = L^2/\kappa$$
 $L = \operatorname{sqrt}(\kappa \tau)$

Example length-scale/time-scale pairs:

Example length sealer time seale pans.								
Time	e	1d	1y	10Kyr	1Myr	100Myr	10Gyr	
Leng	gth	0.3m	5m	500m	5km	50km	500km	

Length	1cm	1m	10m	1km	100km	3000km
Time	100s	12d	3.2yr	32Kyr	320Myr	300Gyr

Note: to a good approximation there are $\pi * 10^7$ seconds in a year.

One important case: instantaneous cooling of a half-space:

Initial Condition (t=0): $T(z,0) = T_m$ for z>0Boundary Condition(z=0): T(0,t) = 0 for t>0

$$T(z,t) = T_m erf\left(\frac{z}{2\sqrt{\kappa t}}\right)$$

This is a plot of erf(x):

Cooling of oceanic lithosphere:

Geotherms, topography, heat flow, hydrothermal circulation t = distance from ridge/plate velocity heat flow is vertical because thermal gradient is vertical

$$T(z,t) = T_m erf\left(\frac{z}{2\sqrt{\kappa t}}\right)$$

$$Q(0,t) = -k \frac{dT}{dz} = -\frac{kT_m}{\sqrt{\pi \kappa t}}$$
 heat flow at the surface (z=0)

 $W = const\sqrt{\kappa t}$ seafloor depth relative the depth at ridge comes from isostacy; integral of rock or ocean density from fixed depth in asthenosphere to the sea surface does not depend on x or t above, while the perturbation in density is proportional to T. The derivation is a bit involved, but straight forward. To first order this explains the variation in world-wide seafloor depth!

Continental Geotherm

Linear relationship between surface heat production and flux is conventional idea

Note -> oceanic (80 mW/m²) and continental (60 mW/m²) heat flow are similar but have different contributions- radiogenics in relatively old continental lithosphere vs cooling in younger oceanic lithosphere

Advection and the Adiabatic gradient:

Homogeneous compression causes self-heating the adiabatic gradient is:

Note first that:
$$\frac{d \ln Y}{dX} = \frac{dY}{Y dX} \quad \text{and} \quad \frac{d \ln Y}{d \ln X} = \frac{X dY}{Y dX}$$

$$\frac{dT}{dz} = T_o \frac{d \ln T}{d \ln V} \frac{d \ln V}{dP} \frac{dP}{dz} = T_o \frac{\gamma \rho g}{K_s} = T_o g \gamma / (V_p^2 - \frac{4}{3} V_s^2)$$

$$K_s^{-1} = -\frac{d \ln V}{dP}; \quad \text{change in volume with pressure = incompressibility}$$

$$V_p^2 = (K_s + \frac{4}{3} \mu) / \rho; \quad V_s^2 = \mu / \rho; \quad V_p \approx 8 - 13 \, km / s \text{ in the mantle}$$

$$K_s / \rho = V_p^2 - \frac{4}{3} V_s^2 \approx \frac{5}{9} V_p^2; \quad \text{if } V_p^2 / V_s^2 \approx 3; \quad K_s \text{ is the bulk modulus}$$

$$\gamma = -\frac{V}{T} \frac{dT}{dV} = -\frac{d \ln T}{d \ln V}; \text{Grune is en Parameter} \approx 1 \, to \, 1.5 \text{ in the mantle}$$

$$P = \rho g z; \quad \frac{dP}{dz} = \rho g; \quad g \approx 10 \, m s^{-2} \text{ throughout the mantle}$$

$$dT/dz = 2000 \text{ K} * 10 \, m / s^2 * 1.25 / (5/9 * (10000 \text{ m/s})^2) = 4.5 \, e - 4 \, deg/m = 0.45 \, deg/km$$

Gradient is 0.3 to 0.5 °C/km – O(1000°C) temperature difference in mantle

Earth Geotherm

B.C. = T_{surface} , T_{core}

Assumptions: conductive boundary layers, nearly adiabatic interior

Consider ICB boundary, CMB, and lithosphere

Note: melting of iron

melting of upper mantle barriers to convection other phase transitions

survey from surface to center of Earth