Rates of change in a continuum

When the material is being tracked through time, it is convenient to use two sets of coordinates

Material

The material coordinates X_{A} are the initial positions of a material particle X in a coordinate system I_{A}

- Although particle X may move over time, the place X_{A} where it started from doesn't ever change.
- The coordinates X_{A} act as a label identifying particle X, wherever it goes.

Spatial

- The spatial coordinates $x_{\mathrm{i}}(X, t)$ mark the current position of a material particle X in a coordinate system \hat{e}_{i}
- Conversely, $X\left(x_{i}, t\right)$ indicates which particle X is occupying location x_{i} at time t.

Temporal Derivatives

As we saw with the traffic on I-5, there are two types of temporal derivatives of some quantity ϕ in a continuum.

- Rate of change of any property $\phi\left(x_{i}, t\right)$ at a fixed point x_{i} in space, can be written as $\frac{\partial \phi\left(x_{i}, t\right)}{\partial t}$
The partial derivative symbol ∂ indicates that position x_{i} is held constant.
- Rate of change of $\phi\left(X_{\mathrm{A}}, \mathrm{t}\right)$ for a particle X_{A} in the moving material, can be written as $\frac{D \phi\left(X_{A}, t\right)}{D t}$ or $\frac{d \phi\left(X_{A}, t\right)}{d t}$
where " D " or " d " indicate a "total" or "material-following" derivative.
The identity A of a particle isn't changing through time
(Calvin and Hobbs transmogrification isn't allowed),
So (2) is a function of a single variable t, and

$$
\frac{d \phi\left(X_{A}, t\right)}{d t}=\frac{\partial \phi\left(X_{A}, t\right)}{\partial t}
$$

Material Derivatives

In the material coordinate system I_{A}, rate of change of ϕ for particle X_{A} as it moves along its trajectory is relatively simple:

$$
\frac{d \phi\left(X_{A}, t\right)}{d t}=\frac{\partial \phi\left(X_{A}, t\right)}{\partial t}
$$

However, it gets uglier if we want to express the material-following derivative in the fixed coordinate system \hat{e}_{i}
The rate of change of ϕ for the particle currently at x_{i} as it moves along its trajectory depends on two things:

1. The rate of change of ϕ seen by an observer at position x_{i}

$$
\frac{\partial \phi\left(x_{i}, t\right)}{\partial t}
$$

2. The rate of change at which the flow v carries gradients of ϕ past position x_{i}, even though ϕ may not be changing on the particles

$$
-\frac{\partial \phi\left(x_{i}, t\right)}{\partial x_{k}} \frac{\partial x_{k}}{\partial t}, \quad \frac{\partial x_{k}}{\partial t}=v_{k}
$$

Ways to change ϕ at a point x_{i}

No motion
e.g. material warming in place

$\frac{\partial \phi\left(X_{A}, t\right)}{\partial t}=\frac{\partial \phi\left(x_{i}, t\right)}{\partial t}$

Motion uniform and constant
e.g. a seamount carried by ocean plate

$$
\frac{\partial \phi\left(x_{i}, t\right)}{\partial t}=-\frac{\partial \phi\left(x_{i}, t\right)}{\partial x_{k}} \frac{\partial x_{k}}{\partial t}, \frac{\partial x_{k}}{\partial t}=v_{k}=v_{0}
$$

Putting it all together

However, it gets uglier if we want to express the material-following derivative in the fixed coordinate system \hat{e}_{i}

In the spatial coordinate system \hat{e}_{i}, rate of change of ϕ for a particle X_{A} as it passes through x_{i} :

\[

\]

