Highlights from Class #1 – Jason Ott Today's highlights on Monday? – Jensen DeGrande

Warm-up question (break-out with 1 or 2 partners, 4 minutes)
You are a DOT traffic engineer, and you want to treat traffic on Interstate 5 as a continuum problem

- suggest a value for averaging length r
- Why?

# Your Class-prep answers for today (break-out groups, 6 minutes)

Read Raymond Notes Ch 1 (class web site,

https://courses.washington.edu/ess511/NOTES/notes.shtml (

Links to an external site.),

Read Mase, Smelser and Mase, Ch 1

Read Raymond Notes Ch 2, (2.1 and 2.2, also on class web site).

Then

In a prose sentence for each, discuss what you see as the key feature of a spring, and of a dash pot.

and

In a prose sentence for each, discuss what you consider to be the essential nature of each of stress, strain, and elastic behavior.

For Monday Oct 4, Class\_03
Please read Raymond Chapter 2 through Section 2.9.
(Focus on the 1-D model descriptions, not the Earth properties yet)

It's time to start Homework Problem Set No.1 under the **HOMEWORK** tab.

https://courses.washington.edu/ess511/ASSIGNMENTS/assignments.shtml (Links to an external site.)

It's a good idea to have some initial ideas formed so that you can contribute to discussions in Problem Lab on Thursday.

This week, also check out "EDW\_notes\_about\_1-D\_models" under the **READING & NOTES** tab

https://courses.washington.edu/ess511/NOTES/notes.shtml (Links to an external site.)

Class-prep writing assignment Class\_03, due in Canvas before class on Monday:

## Viscoelasticity

You are working in a mechanics lab, and your lab boss has asked you to perform a creep test on a rock sample. In general terms, what are you going to do?

The lab boss has now asked you to perform a relaxation test on an identical rock sample. In general terms, what will you do differently this time?

I would expect you can answer each question in a few sentences for each, for something like half a page total.

## **Dealing with a continuum**

| Environment                                      | The continuum                           | How it responds                             |
|--------------------------------------------------|-----------------------------------------|---------------------------------------------|
| Temperature T                                    | Material properties                     | Constitutive properties                     |
| • Pressur <i>e P</i>                             | ullet density $ ho$                     | <ul> <li>thermal conductivity</li> </ul>    |
| • Force <b>F</b>                                 | <ul><li>charge state E</li></ul>        | <ul> <li>electrical conductivity</li> </ul> |
| • Electromagnetic <i>H</i> , <i>B</i> , <i>E</i> | <ul> <li>magnetization state</li> </ul> | <ul> <li>elastic constants</li> </ul>       |
|                                                  |                                         | <ul><li>Viscosity</li></ul>                 |
|                                                  |                                         | <ul> <li>magnetic permeability</li> </ul>   |

### Force vs stress in 1-D

- *F*(*t*) applied force
- *l*<sub>0</sub> initial length
- *l*(*t*) deformed length
- *u*(*t*) elongation





We want to discover a relationship between force and response (shape change) independent of the geometry.

- Stress is force per unit area  $\sigma(t) = F/A$
- Strain is fractional elongation  $e(t) = u(t)/l_0$
- Goal is to relate  $\sigma$  and e independent of geometry

#### **Issues**

- Large strains necking (no, not that necking)
- Silly-putty demo
- What happens to total force in the neck?
- What happens to stress in the neck?



Linear Elastic Behavior – Hookean solid (an idealization)  $\sigma(t) = \mu e(t)$ 



Linear viscous Behavior – Newtonian fluid (an idealization)

$$\sigma(t) = \eta \dot{e}(t)$$

The dot indicates a time derivative

 $\dot{e}$  is a strain *rate*  $\eta$  is a viscosity







## Failure (an idealization)

There is a critical stress  $\sigma_0$  called the yield stress

- Below  $\sigma_0$  there is no deformation
- At  $\sigma_0$  the deformation can be anything
- Can be brittle failure, or perfect plasticity, or work hardening





- No strain until stress reaches  $\sigma_0$ .
- For straining to continue, applied stress must continue to rise.
- The more strain that has occurred, the greater the stress must be to cause further strain.

#### Brittle vs ductile behavior

The difference is rate of loss of strength

- Brittle material loses strength immediately
- Ductile material loses strength slowly as strain increases

A more realistic model for real materials



The importance of each element depends on time scale, pressure, temperature, and state of stress