
ESS 411/511 Geophysical Continuum Mechanics  Class #4

Highlights from Class #3       – Alysa Fintel

Today’s highlights on Friday – Anna Ledeczi

Warm-up question (break-out) –

• What is a creep function?

• What is a relaxation function?



Announcements

• When I set up the sign-up schedule for class highlights, I  
hadn't properly accounted for the November 11 Veteran's 
Day holiday.   It should be correct now.    If you had signed 
up to highlight a class around Nov 11 or later, please check 
that the revised schedule still works for you.   Thanks. 

• On the Canvas home page, I have added 
o a  link to a calendar showing daily topics
o links to FILES folders where you can find the slides from 

past lectures, and your Highlights reports from those 
lectures. 

• Homework #1 is live on Canvas.   Please check it out and 
bring questions to our HW Lab on Thursday.
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Broad Outline for the Quarter
• Continuum mechanics in 1-D

• 1-D models with springs, dashpots, sliding blocks

• Mathematical tools – vectors, tensors, coordinate changes 

• Stress – principal values,  Mohr’s circles for 3-D stress

• Coulomb failure, pore pressure, crustal strength

• Measuring stress in the Earth

• Strain – Finite strain; infinitesimal strains

• Moments – lithosphere bending; Earthquake moment magnitude

• Conservation laws 

• Constitutive relations for elastic and viscous materials

• Elastic waves; kinematic waves
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Class-prep answers (break-out)
This was the assignment:
Energy and dissipation
If you manually compress a perfect spring and then release it back to 
its initial state (a strain cycle), no energy gets converted into heat, 
but if you manually drive a perfect dash-pot through a similar strain 
cycle, some energy is always converted to heat.
Without resorting to any equations, explain to a nonscientific family 
member why this has to be true, based your efforts expended in the 
two experiments.

Share with partners your explanations of energy dissipation (or not) 
in cyclical springs and dash-pots.
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For Friday (class #5)
Please review the section in Raymond Ch 2, Section 2.9 on harmonic 
loading, and start reading Mase, Smelser, and Mase, Ch.2, through Section 
2.3.

When a viscoelastic material is loaded
harmonically at a frequency w, the 
attenuation (Q-1) of that sinusoidal signal 
depends on the relation between w and a 
characteristic time t of the material.  
• With reference to the Standard Linear 

Solid model, please explain in words 
why energy loss (attenuation Q-1) is 
minimal at high and low frequencies, 
but is high at mid-range.  

Your class-prep assignment on frequency-dependent attenuation
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A model for idealized real materials

.

Forces are balanced 
• Each element feels the same force F

-F
F



Rheological tests
Creep tests
• Apply a constant stress s

e.g. put a weight on top of a sample
• Measure strain e(t) or strain rate !e(t)

Constant strain-rate tests
• Apply a constant strain rate

e.g. with a motor-driven vice 
• Measure stress s(t)

Relaxation  tests
• Apply an abrupt strain e, then hold it constant

e.g. abrupt shortening in a vice.
• Measure stress s(t) as sample adjusts.



Models for linear solids

Those springs and dashpots …



Viscoelastic modelµ1

Elastic

Delayed 
Elastic

Viscous

µ2

Called Maxwell Solid, if h1 = ∞, µ1 = ∞
Called Kelvin-Voigt Solid, if h2 = ∞, µ2 = ∞
Called Standard Linear Solid, if h2 = ∞ 



Creep Test with Viscoelastic model



Viscoelastic behavior in real materials

Changes in the microstructure at the crystal level 
inside the sample can alter the effective viscosity 
after significant strain as the test progresses.
• e.g. crystal basal planes align for easy glide
• microcracks may develop, allowing internal slip

e

Stress

Strain



µ
Maxwell solid

time

s

e
?

Also Homework set #1
• Is there a characteristic 

time for the material?
• h/µ ?



Kelvin-Voigt solid µ

time

s

e
?

• Is there a characteristic 
time for the material?
• h/µ ?



A shock absorber can be 
modeled as a delayed 
elasticity Kelvin-Voigt solid.

µ



Kelvin-Voigt Response

• At t = 0, spring hasn’t shortened; dashpot supports all the stress s , so
e(0) = 0   (*)

• At t = ∞,  dashpot has stopped; spring supports all the stress s, so
e(∞) = s/µ (**)

• The transition is probably a decaying exponential. (Let’s try it …)
• t=h/µ  must be the time constant defining the transition.

σ (t) = µ  e(t)+η !e(t)

µ

Spring and dashpot together support stress s

With the boundary conditions (*) and (**), A can be found, and solution is …
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Response to 
constant loading s

Elastic Delayed 
Elastic

Viscous

µ2
µ1

Generalized linear viscoelastic solid



How did we get that?!

Elastic Delayed 
Elastic

Viscous

µ2

µ1

Each element feels the same stress s, 
• We just added up the strains in each element



The Raymond  notes also give creep functions and relaxation 
functions for step changes in stress or strain

C(t-t’) is the creep 
function

Creep 
test

= Applied stress s

k(t-t’) is the relaxation 
function

Relaxation 
test

e e=

k ks

Applied strain s



Relaxation Function in Standard Linear Solid (h2 = ∞)

At t=0 : 
• The spring µ1 in the K-V element is prevented from deforming, due to h1. 
• All applied strain e is taken up initially in the spring µ2. So s(0) =µ2e

(Do you agree that (*) shows this?)
• Stress s(0) also acts on the K-V element, so it also begins to strain.

( ) (*)
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Relaxation Function in Standard Linear Solid (h2 = ∞)

At t > 0
• The K-V element is starting to strain at the rate                      ,

( ) (*)

µ2
µ1

X
e = constant

!e(0) = µ2e
η

• K-V begins to take over some of the strain from the spring µ2.
• Strain e1 increases in spring µ1 and h1, and strain e2 decreases in spring µ2

e1 + e2 = e
• Because strain is decreasing in spring µ2, stress s(t) must be decreasing. 
• Strain e1 in spring µ1 cannot exceed s∞/µ1

• Dash-pot h1 must eventually stop moving.
• This means there is no stress in the dash-pot at t=t∞

• There will be a time constant t
that depends on µ2, µ1 and h1 τ =

η1
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Relaxation Function in Standard Linear Solid (h2 = ∞)

At t = ∞

( ) (*)
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X
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• Strain e1 in spring µ1 cannot exceed s∞/µ1
• Dash-pot h1 must eventually stop moving.
• This means there is no stress in the dash-pot at t=t∞
• Both springs µ1 and µ2 then support the same stress s∞, so 
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Relaxation Function in Standard Linear Solid (h2 = ∞)
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Energy and Work

In Continuum – work done per unit volume:
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Rate of doing work per unit volume

(overdots indicate time derivatives)

Work W is force F acting through a distance d

Work for point particles:  W = F d



Energy and Work

For elastic material, substitute:   s(t) = µe(t)

DE(t) returns to zero whenever s returns to zero.
• All energy is recovered

Total energy input between from time 0 to t



Energy and Work

Total energy input between from time 0 to t

For viscous 
material:

The integrand is always positive.
• DE(t) can never return to zero if strain rate is ever nonzero
• energy is always lost if any strain has occurred.

ΔE(t) = η !e(t)2
0

t
∫ dt '




