Highlights from Class \#6 - Madeline Mamer
Today's highlights on Friday - Abigail Thienes

In recognition of Earth Science Week (11-17 October 2020), we have collected some articles centered on our ever-evolving planet, covering volcanology, geology, climate science, and additional Earth-related news and research.

SCIENCE is a leading outlet for scientific news, commentary, and cutting-edge research across the sciences, with articles that consistently rank among the most cited in the world. SCIENCE ADVANCES is our open access multidisciplinary journal, publishing impactful research papers and reviews in any area of science, in both disciplinary-specific and broad, interdisciplinary areas. NEWS FROM SCIENCE is our award-winning daily news site bringing you breaking news from the world of scientific research and science policy. The INSIGHTS section of SCIENCE consists of Perspectives, Policy Forums, Book Reviews, and Letters that provide fresh viewpoints to drive fields forward and to facilitate interdisciplinary discussion and decision-making.

BESERMBH

Science

Report

Seismic ocean thermometry

Wenbo Wu et al.
Science 18 Sep 2020: Vol. 369,
Issue 6510, pp. 1510-1515
DOI: 10.1126/science.abb9519

Research Article
Strengthening of the Kuroshio current by intensifying tropical cyclones
Yu Zhang et al.
Science 09 May 2020: Vol. 368,
Issue 6494, pp. 988-993
DOI: 10.1126/science.aax5758

Report

Large contribution from anthropogenic warming to an emerging North American megadrought
A. Park Williams et al.

Science 17 Apr 2020: Vol. 368,
Issue 6488, pp. 314-318
DOI: 10.1126/science.aaz9600

Report

Colorado River flow dwindles as warming-driven loss of refelctive snow energizes evaporation
P.C.S. Milly et al.

Science 13 Mar 2020: Vol. 367,
Issue 6483, pp. 1252-1255
DOI: 10.1126/science.aay9187
r.
A 1

WISHITIS

PERSPECTIVES

Volcanology
Mount St. Helens at 40
Jon J. Major
Science 15 May 2020: Vol. 368,
Issue 6492, pp. 704-705
DOI: 10.1126/science.aaz7126

Volcanology

Calderas collapse as magma flows into rifts
Freysteinn Sigmundsson
Science 06 Dec 2019: Vol. 366,
Issue 6470, pp. 1300-1201
DOI: 10.1126/science.aaz7126

BOOKS ET AL.

Earth Sciences
The Ice at the End of the World: An Epic Journey into Greenland's Buried Past and Our Perilous Future
Jon Gertner Random House, 2019. 445 pp

A remote region, revealed

William E. Glassley
Science 28 Jun 2019: Vol. 364,
Issue 6447, pp. 1241
DOI: 10.1126/science.aax4901

Europe builds 'digital twin' of Earth to hone climate forecasts

Class-prep - Vector product

cross (vector) product of two vectors, Eq 2.12:

$$
\boldsymbol{u} \times \boldsymbol{v}=-\boldsymbol{v} \times \mathbf{u}=(u v \sin \theta) \widehat{\boldsymbol{e}}=\varepsilon_{i j k} u_{i} v_{j} \widehat{\mathbf{e}}_{k}
$$

Warm-up question - Box product

triple scalar product (box product), Eq 2.13:

$$
\begin{aligned}
{[\mathbf{u}, \boldsymbol{v}, \boldsymbol{w}] } & =u_{i} \widehat{\boldsymbol{e}}_{i} \cdot\left(v_{j} \widehat{\boldsymbol{e}}_{j} \times w_{k} \widehat{\boldsymbol{e}}_{\mathrm{k}}\right)=u_{i} \widehat{\boldsymbol{e}}_{i} \cdot \varepsilon_{j k q} v_{j} w_{k} \widehat{\boldsymbol{e}}_{\mathrm{q}} \\
& =\varepsilon_{j k q} u_{i} v_{j} w_{k} \delta_{i q}=\varepsilon_{i j k} u_{i} v_{j} w_{k}
\end{aligned}
$$

What does $[\mathbf{u}, \mathbf{v}, \mathbf{w}]$ measure?

https://en.wikipedia.org/wiki/Parallelepiped

ESS 411/511 Geophysical Continuum Mechanics

For Friday class

- Please read Mase, Smelser, and Mase, CH 2 through Section 2.6

Your short CR/NC Pre-class prep writing assignment (1 point) in Canvas

- It will be due in Canvas at the start of class.
- I will send another message when it is posted in Canvas.

ESS 411/511 Geophysical Continuum Mechanics

Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Attenuation
- Mathematical tools - vectors, tensors, coordinate changes
- Stress - principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain - Finite strain; infinitesimal strains
- Moments - lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

Problem Sets

- Problem Set \#1 - due today
- Problem Set \#2 - work in Lab on Thursday

Kronecker delta

Since the base vectors $\widehat{\mathbf{e}}_{i}(i=1,2,3)$ are unit vectors and orthogonal

$$
\widehat{\boldsymbol{e}}_{i} \cdot \widehat{\boldsymbol{e}}_{j}= \begin{cases}1 & \text { if numerical value of } i=\text { numerical value of } j \\ 0 & \text { if numerical value of } i \neq \text { numerical value of } j\end{cases}
$$

Therefore, if we introduce the Kronecker delta defined by

$$
\delta_{i j}= \begin{cases}1 & \text { if numerical value of } i=\text { numerical value of } j \\ 0 & \text { if numerical value of } i \neq \text { numerical value of } j\end{cases}
$$

we see that

$$
\widehat{\boldsymbol{e}}_{i} \cdot \widehat{\boldsymbol{e}}_{j}=\delta_{i j} \quad(i, j=1,2,3) .
$$

Note that $\delta_{i j}$ is like a
3×3 identity matrix $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Permutation symbol

Imagine the numbers 1, 2, 3 are written clock-wise around the circumference of a wheel
$\varepsilon_{i j k}=\left\{\begin{aligned} 1 & \text { if the numerical values of } i, j, k \text { are in clockwise order } \\ -1 & \text { if the numerical values of } i, j, k \text { are anti-click-wise order } \\ 0 & \text { if the numerical values of } i, j, k \text { are in any other order }\end{aligned}\right.$

Cross products of basis vectors

$$
\widehat{\mathbf{e}}_{i} \times \widehat{\mathbf{e}}_{j}=\varepsilon_{i j k} \widehat{\boldsymbol{e}}_{\mathrm{k}} \quad(\mathrm{i}, \mathrm{j}, \mathrm{k}=1,2,3)
$$

Switching indices

$$
\varepsilon_{i j k}=-\varepsilon_{k j i}=\varepsilon_{k i j}=-\varepsilon_{i k j}
$$

Determinants

$$
\begin{aligned}
\operatorname{det} \mathcal{A}= & \left|\mathcal{A}_{i j}\right|=\left|\begin{array}{lll}
\mathcal{A}_{11} & \mathcal{A}_{12} & \mathcal{A}_{13} \\
\mathcal{A}_{21} & \mathcal{A}_{22} & \mathcal{A}_{23} \\
\mathcal{A}_{31} & \mathcal{A}_{32} & \mathcal{A}_{33}
\end{array}\right| \\
\operatorname{det} \mathcal{A}= & \mathcal{A}_{11}\left|\begin{array}{ll}
\mathcal{A}_{22} & \mathcal{A}_{23} \\
\mathcal{A}_{32} & \mathcal{A}_{33}
\end{array}\right|-\mathcal{A}_{12}\left|\begin{array}{ll}
\mathcal{A}_{21} & \mathcal{A}_{23} \\
\mathcal{A}_{31} & \mathcal{A}_{33}
\end{array}\right|+\mathcal{A}_{13}\left|\begin{array}{ll}
\mathcal{A}_{21} & \mathcal{A}_{22} \\
\mathcal{A}_{31} & \mathcal{A}_{32}
\end{array}\right| \\
= & \mathcal{A}_{11}\left(\mathcal{A}_{22} \mathcal{A}_{33}-\mathcal{A}_{23} \mathcal{A}_{32}\right)-\mathcal{A}_{12}\left(\mathcal{A}_{21} \mathcal{A}_{33}-\mathcal{A}_{23} \mathcal{A}_{31}\right) \\
& +\mathcal{A}_{13}\left(\mathcal{A}_{21} \mathcal{A}_{32}-\mathcal{A}_{22} \mathcal{A}_{31}\right) .
\end{aligned}
$$

$\varepsilon_{\mathrm{qm} m} \operatorname{det} \mathcal{A}=\varepsilon_{\mathrm{ijk}} \mathcal{A}_{\mathrm{iq}} \mathcal{A}_{\mathrm{jm}} \mathcal{A}_{\mathrm{kn}}$

Vector algebra

Lots of details in CH 2

- Are there points that are unclear?
- Please let me know if there are things you would like us to look at specifically.

Coordinate Systems

Thumb $=1$
Index $=2$
Middle $=3$

Transformation of Cartesian Coordinates

An object such as vector v is represented as v_{j} in coordinate system $O x_{1} x_{2} x_{3}$ with unit coordinate vectors \hat{e}_{j}

v is not rotated -

- its coordinates are just expressed in a different coordinate system

Transformation matrix

The new coordinate vectors $\hat{e}^{\prime}{ }_{j}$ can be expressed in terms of the old coordinate vectors \hat{e}_{j}

$$
\begin{array}{ll}
\widehat{\boldsymbol{e}}_{1}^{\prime}=a_{11} \hat{\mathbf{e}}_{1}+a_{12} \hat{\mathbf{e}}_{2}+a_{13} \hat{\mathbf{e}}_{3}=a_{1 j} \hat{\boldsymbol{e}}_{j} & \\
\hat{\mathbf{e}}_{2}^{\prime}=a_{21} \hat{\mathbf{e}}_{1}+a_{22} \widehat{\boldsymbol{e}}_{2}+a_{23} \widehat{\mathbf{e}}_{3}=a_{2 j} \hat{\mathbf{e}}_{j} & \text { or, } \\
\hat{\mathbf{e}}_{3}^{\prime}=a_{31} \hat{\mathbf{e}}_{1}+a_{32} \hat{\mathbf{e}}_{2}+a_{33} \widehat{\mathbf{e}}_{3}=a_{3 j} \hat{\mathbf{e}}_{j} & \hat{\mathbf{e}}_{i}^{\prime}=a_{i j} \hat{\mathbf{e}}_{j}
\end{array}
$$

$$
\left[\begin{array}{l}
\hat{\mathbf{e}}_{1}^{\prime} \\
\hat{\mathbf{e}}_{2}^{\prime} \\
\hat{\mathbf{e}}_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
\mathbf{a}_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
\hat{\mathbf{e}}_{1} \\
\hat{\mathbf{e}}_{2} \\
\hat{\mathbf{e}}_{3}
\end{array}\right]
$$

A is the transformation matrix

Meaning of $a_{i j}$

The matrix elements a_{ij} are the direction cosines between \hat{e}_{i}^{\prime} and \hat{e}_{j}.

Transformation matrix

Orthogonality

$$
\begin{aligned}
& \hat{\boldsymbol{e}}_{\mathrm{i}}^{\prime} \cdot \hat{\boldsymbol{e}}_{\mathrm{j}}^{\prime}=\mathrm{a}_{\mathrm{iq}} \hat{\mathbf{e}}_{\mathrm{q}} \cdot \mathrm{a}_{\mathrm{j} m} \hat{\mathbf{e}}_{\mathrm{m}}=\mathrm{a}_{\mathrm{iq}} \mathbf{a}_{\mathrm{j} m} \delta_{\mathrm{q} m}=\mathrm{a}_{\mathrm{iq}} \mathrm{a}_{\mathrm{jq}}=\delta_{\mathrm{ij}} \\
& a_{i q} a_{j q}=\delta_{i j} \quad \text { or } \mathbf{A} \mathbf{A}^{\top}=\mathbf{l} \\
& a_{i j} a_{i k}=\delta_{j k} \quad \text { or } \mathbf{A}^{\top} \mathbf{A}=\mathbf{l} \\
& \hat{\mathbf{e}}_{i}=\mathrm{a}_{\mathrm{j} i} \hat{\mathbf{e}}_{\mathrm{j}}^{\prime}
\end{aligned}
$$

Example 2.12

Let the primed axes $O x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime}$ be given with respect to the unprimed axes by a 45° (counterclockwise) rotation about the x_{2} axis as shown. Determine the primed components of the vector given by $\boldsymbol{v}=\widehat{\mathbf{e}}_{1}+\widehat{\mathbf{e}}_{2}+\widehat{\mathbf{e}}_{3}$.

Change of coordinates for a scalar

$$
\theta^{\prime}=\theta
$$

Change of coordinates for a vector

$$
\boldsymbol{v}=v_{j}^{\prime} \hat{\mathbf{e}}_{j}^{\prime}=v_{i} \hat{\mathbf{e}}_{i}=v_{i} \mathrm{a}_{\mathrm{ji}} \hat{\boldsymbol{e}}_{j}^{\prime}
$$

Or without the unit vectors

$$
v_{\mathrm{j}}^{\prime}=a_{\mathrm{j} i} v_{\mathrm{i}}
$$

Change of coordinates for a $2^{\text {nd }}$ order tensor

An example of second order tensor w_{ij} is

$$
\begin{aligned}
w_{\mathrm{ij}} & =u_{\mathrm{i}} v_{\mathrm{j}} \\
& =a_{\mathrm{qi}} u_{\mathrm{q}} a_{\mathrm{mj}} v^{\prime}{ }_{m} \\
& =a_{\mathrm{qi}} a_{\mathrm{mj}} u_{\mathrm{q}}^{\prime} v_{\mathrm{\prime}}^{\prime} \\
& =a_{\mathrm{q} i} a_{\mathrm{mj}} w_{\mathrm{ij}}^{\prime}
\end{aligned}
$$

Or symbolically

$$
W=A^{\top} W^{\prime} A \text { and } W^{\prime}=A W A^{\top}
$$

Change of coordinates for any order tensor $\mathrm{R}_{\mathrm{qm} . . . \mathrm{n}}$

$$
R_{i j \ldots k}^{\prime}=a_{i q} a_{j m} \cdots a_{k n} R_{q m \ldots n}
$$

Multiply by transformation matrix A once for each order in the tensor $\mathrm{R}_{\mathrm{qm} . . . \mathrm{n}}$

Proper and Improper changes of coordinates

$\operatorname{det}(\mathbf{A})=1$ is a rotation (proper)
$\operatorname{det}(A)=-1$ is a reflection (improper)
(right-handed coordinate system
becomes a left-handed coordinate system (generally not good ...)

