ESS 411/511 Geophysical Continuum Mechanics Class #8

Highlights from Class #7 — Abigail Thienes
Today’s highlights on Monday — Alexandria Vasquez-Hernandez

Warm-up (break-out rooms)

* Show that a; by is the same as multiplying two 3x3 matrices
A and B together.

* Class- prep questions
Q;=A;+B; (1)
What property of A; makes it symmetric?
How can you make A; from Q;; ?
What property of B; makes it anti-symmetric?
How can you make B; from Q; ?

Show that Equation (1) holds with your A; and B; .



ESS 411/511 Geophysical Continuum Mechanics

For Monday class
* Please read Mase, Smelser, and Mase, CH 2 through Section 2.8

(tensor fields; Gauss’ theorem)
Please also read Mase, Smelser, and Mase, CH 3 through Section 3.3

Your short CR/NC Pre-class prep writing assighment (1 point) in Canvas
* |t will be due in Canvas at the start of class.
* | will send another message when it is posted in Canvas.



ESS 411/511 Geophysical Continuum Mechanics

Broad Outline for the Quarter

Continuum mechanics in 1-D

1-D models with springs, dashpots, sliding blocks
Attenuation

Mathematical tools — vectors, tensors, coordinate changes
Stress — principal values, Mohr’s circles for 3-D stress
Coulomb failure, pore pressure, crustal strength
Measuring stress in the Earth

Strain — Finite strain; infinitesimal strains

Moments — lithosphere bending; Earthquake moment magnitude
Conservation laws

Constitutive relations for elastic and viscous materials
Elastic waves; kinematic waves



Problem Sets

You are working on Problem Set #2
 Due in Canvas on Wednesday



Vector algebra

Lots of details in CH 2

* Are there points that are unclear?

* Please let me know if there are things you would like
us to look at specifically.



Transformation of Cartesian Coordinates

An object such as vector vis The same object (e.g. v) is
represented as v; in coordinate represented as v;' in coordinate
system Ox;x,x; with unit system Ox;’x,’x;” with unit
coordinate vectors &, coordinate vectors &,

v is not rotated —
* its coordinates are just expressed in a
different coordinate system



Transformation matrix

The new coordinate vectors €’; can be expressed in terms of
the old coordinate vectors &,

AV AN AY AY AY
€; =an1€e1+aiz2€2 +a13€3 = a;€;
or
AN AN AY AY AN )
€, =Qa21€71 +a22€2 +Qa23€3 = a2;€;
A, — -uA-
/e\é = a3] é‘1 + (132/6\2 ~+ (133/6\3 = agj’e\j €= 0ai€
e apj; ajz a3 (4 A is the transformation
é\é = a1 Q2 Q3 éz matrix
AN Al
€3 | a3 a3z azz | | €3 | ,
XS\
a;; is just the projection of the &

i™" new axis unit vector &’ onto
the /™ old axis unit vector &
through their dot product &’; * € g




Change of coordinate system for any order tensor R, |

/
Rij...k = AigAjm " - akanm...n

Multiply by transformation matrix A once
for each order in the tensor R, |

Examples
e Othorder tensor (scalar) —no a,, factors 6" =6
* 1%t order tensor (vector) -1 a,, factor u'; = a; u;

* 2" order tensor - 2ay,factors =05, a0t



Proper and Improper changes of coordinates

det(A) =1 is arotation (proper)

det(A) =-1 is areflection (improper)
(right-handed coordinate system becomes a
left-handed coordinate system (generally not
good ...)

We will use only right-handed coordinates



Principal values and directions
(Eigenvalues and eigenvectors)

A 2" order tensor s;; maps a vector u;onto another vector v,
SiU; =V,
In general y; and v, point in different directions.

It would be nice if we could find some special vectors u; that
mapped onto vectors v; that were parallel to u.

That could help us to find a coordinate system in which s; could
be expressed more simply.

For example, stress in the rocks on a

mountain side.

We know that there is no shear stress on

the sloping surface.

* Maybe the stress tensor would be o1y
simpler using a coordinate system L /{Qta
aligned with the mountain surface. 7‘- Y




Finding eigenvectors

When tjj is symmetric with real components, there will be
some vectors n; that do map onto a parallel vector.

tijTLj = }\Tl,i or T-i=M

When n; is a unit vector, it defines a principal direction or eigenvector
of the tensor ti; and A is called a principal value or eigenvalue of t;;
Since n;=9; n,
or
(tij - A0y n; =0 orinsymbolic form, (T-Al)*n=0



Finding eigenvectors
(tij—kéij) n; =0 orinsymbolic form, (T-Al)*n=0

Obviously these equations are
. (t A) . —0 satisfied if n;=n,=n;=0.
21 + {22 —A)M2 +13M3 = But that is no help because we

t31ng + taonz + (tz3z3 —A)nz3 =0 said n; is a unit vector

(t17 —A)ng +tiogny +tyz3n3 =0

Nontrivial solutions can exist
(the equations are not independent) |tij — )\51)'| =0
if the determinant=0

Evaluating the determinant produces a cubic equation in A
A — I4A%2 + IIgA — 11T = 0

This is called the Characteristic Equation, and the 3 coefficients are the first,
second, and third invariants of the tensor ti



Finding eigenvectors

A — I4A2 + IITA — 11T = 0

This is called the Characteristic Equation, and the 3 coefficients are the first,
second, and third invariants of the tensor t...
Itr=tii=tr T
]

1
i [tiitﬁ — tij tji) - [(tr T]Z — tr (TZ)]

2
HIT = Eijkt]itzjtg,k =detT

Iy =

No matter what coordinate system we use to express the tensor T,
these 3 special quantities always have the same 3 values.



Finding eigenvectors

A — I4A2 + IITA — 11T = 0

This is called the Characteristic Equation, and the 3 coefficients are the first,
second, and third invariants of the tensor ti

The cubic equation has 3 solutions A, A, and A3, which are all real
for a symmetric tensor T whose elements are real.

(q)

There is a direction M; " “associated with each eigenvalue K(q).

We can ﬁndngq)by solving
[tij—A(q)éij} Tlgq) =0 (q =1,2,3)

1

Dl =1 (g=1,2,3).

To see how to do this, check out MSM Example 2.14 on page 32.



