ESS 411/511 Geophysical Continuum Mechanics Class \#8

| Highlights from Class \#7 | - Abigail Thienes |
| :--- | :--- | :--- |
| Today's highlights on Monday | - Alexandria Vasquez-Hernandez |

Warm-up (break-out rooms)

- Show that $a_{\mathrm{ik}} b_{\mathrm{kj}}$ is the same as multiplying two 3×3 matrices \mathbf{A} and \mathbf{B} together.
- Class- prep questions
$\mathrm{a}_{\mathrm{ij}}=\mathrm{A}_{\mathrm{ij}}+\mathrm{B}_{\mathrm{ij}}$ (1)
What property of \mathbf{A}_{ij} makes it symmetric?
How can you make \mathbf{A}_{ij} from Q_{ij} ?
What property of \mathbf{B}_{ij} makes it anti-symmetric?
How can you make \mathbf{B}_{ij} from Q_{ij} ?
Show that Equation (1) holds with your \mathbf{A}_{ij} and \mathbf{B}_{ij}.

ESS 411/511 Geophysical Continuum Mechanics

For Monday class

- Please read Mase, Smelser, and Mase, CH 2 through Section 2.8 (tensor fields; Gauss' theorem)
Please also read Mase, Smelser, and Mase, CH 3 through Section 3.3

Your short CR/NC Pre-class prep writing assignment (1 point) in Canvas

- It will be due in Canvas at the start of class.
- I will send another message when it is posted in Canvas.

ESS 411/511 Geophysical Continuum Mechanics

Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Attenuation
- Mathematical tools - vectors, tensors, coordinate changes
- Stress - principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain - Finite strain; infinitesimal strains
- Moments - lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

Problem Sets

You are working on Problem Set \#2

- Due in Canvas on Wednesday

Vector algebra

Lots of details in CH 2

- Are there points that are unclear?
- Please let me know if there are things you would like us to look at specifically.

Transformation of Cartesian Coordinates

An object such as vector v is represented as v_{j} in coordinate system $O x_{1} x_{2} x_{3}$ with unit coordinate vectors \hat{e}_{j}

v is not rotated -

- its coordinates are just expressed in a different coordinate system

Transformation matrix

The new coordinate vectors \hat{e}_{j} can be expressed in terms of the old coordinate vectors \hat{e}_{j}
$\hat{\boldsymbol{e}}_{1}^{\prime}=a_{11} \hat{\boldsymbol{e}}_{1}+a_{12} \hat{\boldsymbol{e}}_{2}+a_{13} \hat{\boldsymbol{e}}_{3}=a_{1 j} \hat{\boldsymbol{e}}_{j}$
$\hat{\boldsymbol{e}}_{2}^{\prime}=a_{21} \hat{\mathbf{e}}_{1}+a_{22} \hat{\boldsymbol{e}}_{2}+a_{23} \hat{\boldsymbol{e}}_{3}=a_{2 j} \hat{\boldsymbol{e}}_{j}$
$\hat{\mathbf{e}}_{3}^{\prime}=a_{31} \hat{\mathbf{e}}_{1}+a_{32} \hat{\boldsymbol{e}}_{2}+\mathrm{a}_{33} \hat{\boldsymbol{e}}_{3}=\mathrm{a}_{3 j} \hat{\boldsymbol{e}}_{j}$

$$
\hat{\boldsymbol{e}}_{i}^{\prime}=\mathrm{a}_{i j} \hat{\mathbf{e}}_{j}
$$

$\left[\begin{array}{l}\hat{\mathbf{e}}_{1}^{\prime} \\ \hat{\mathbf{e}}_{2}^{\prime} \\ \hat{\mathbf{e}}_{3}^{\prime}\end{array}\right]=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]\left[\begin{array}{c}\hat{\mathbf{e}}_{1} \\ \hat{\mathbf{e}}_{2} \\ \hat{\mathbf{e}}_{3}\end{array}\right]$
a_{ij} is just the projection of the $i^{\text {th }}$ new axis unit vector $\hat{e n}_{i}$ onto the $j^{\text {th }}$ old axis unit vector \hat{e}_{j} through their dot product $\hat{e}^{\prime}{ }^{\bullet} \bullet \hat{e}_{j}$

Change of coordinate system for any order tensor $\mathrm{R}_{\mathrm{qm} . . . \mathrm{n}}$

$$
R_{i j \ldots k}^{\prime}=a_{i q} a_{j m} \cdots a_{k n} R_{q m \ldots n}
$$

Multiply by transformation matrix A once for each order in the tensor $\mathrm{R}_{\mathrm{qm} . . . \mathrm{n}}$

Examples

- $0^{\text {th }}$ order tensor (scalar) - no a_{pq} factors $\theta^{\prime}=\theta$
- $1^{\text {st }}$ order tensor (vector) $-1 a_{\mathrm{pq}}$ factor $u_{i}^{\prime}=a_{\mathrm{ij}} u_{\mathrm{j}}$
- $2^{\text {nd }}$ order tensor $-2 a_{\mathrm{pq}}$ factors $\mathrm{t}^{\prime}{ }_{\mathrm{ij}}=a_{\mathrm{im}} a_{\mathrm{jn}} \mathrm{t}^{\prime}{ }_{m n}$

Proper and Improper changes of coordinates

$\operatorname{det}(\mathbf{A})=1$ is a rotation (proper)
$\operatorname{det}(\mathbf{A})=-1$ is a reflection (improper)
(right-handed coordinate system becomes a left-handed coordinate system (generally not good ...)

We will use only right-handed coordinates

Principal values and directions
 (Eigenvalues and eigenvectors)

A $2^{\text {nd }}$ order tensor $s_{i j}$ maps a vector u_{j} onto another vector v_{i}

$$
\mathrm{s}_{\mathrm{ij}} u_{\mathrm{j}}=v_{\mathrm{i}}
$$

In general u_{j} and v_{i} point in different directions.
It would be nice if we could find some special vectors u_{j} that mapped onto vectors v_{i} that were parallel to u_{j}.
That could help us to find a coordinate system in which s_{ij} could be expressed more simply.

For example, stress in the rocks on a mountain side.
We know that there is no shear stress on the sloping surface.

- Maybe the stress tensor would be simpler using a coordinate system aligned with the mountain surface.

Finding eigenvectors

When t_{ij} is symmetric with real components, there will be some vectors n_{j} that do map onto a parallel vector.

$$
\mathrm{t}_{\mathrm{ij}} n_{\mathrm{j}}=\lambda n_{\mathrm{i}} \quad \text { or } \quad \mathrm{T} \cdot \hat{\mathrm{n}}=\lambda \hat{n}
$$

When n_{j} is a unit vector, it defines a principal direction or eigenvector of the tensor t_{ij}, and λ is called a principal value or eigenvalue of t_{ij}.

$$
\mathrm{t}_{\mathrm{ij}} n_{\mathrm{j}}-\lambda n_{\mathrm{i}}=0
$$

Since $n_{i}=\delta_{i j} n_{j}$

$$
\mathrm{t}_{\mathrm{ij}} n_{\mathrm{j}}-\lambda \delta_{\mathrm{ij}} n_{\mathrm{j}}=0
$$

or

$$
\left(\mathrm{t}_{\mathrm{ij}}-\lambda \delta_{\mathrm{ij}}\right) n_{\mathrm{j}}=0 \quad \text { or in symbolic form, }(\mathbf{T}-\lambda \mathrm{I}) \bullet \boldsymbol{n}=\mathbf{0}
$$

Finding eigenvectors

$$
\begin{array}{ll}
\left(\mathrm{t}_{\mathrm{ij}}-\lambda \delta_{\mathrm{ij}}\right) n_{\mathrm{j}}=0 & \text { or in symbolic form, }(\mathbf{T}-\lambda \mathrm{I}) \cdot \boldsymbol{n}=0 \\
\left(\mathrm{t}_{11}-\lambda\right) n_{1}+\mathrm{t}_{12} n_{2}+\mathrm{t}_{13} n_{3}=0 & \text { Obviously these equations are } \\
\mathrm{t}_{21} n_{1}+\left(\mathrm{t}_{22}-\lambda\right) n_{2}+\mathrm{t}_{23} n_{3}=0 & \text { satisfied if } n_{1}=n_{2}=n_{3}=0 \\
\mathrm{t}_{31} n_{1}+\mathrm{t}_{32} n_{2}+\left(\mathrm{t}_{33}-\lambda\right) n_{3}=0 & \text { But that is no help because we } \\
\text { said } n_{\mathrm{j}} \text { is a unit vector }
\end{array}
$$

Nontrivial solutions can exist (the equations are not independent) $\left|t_{i j}-\lambda \delta_{i j}\right|=0$ if the determinant $=0$

Evaluating the determinant produces a cubic equation in λ

$$
\lambda^{3}-\mathrm{I}_{\mathrm{T}} \lambda^{2}+\mathrm{II}_{\mathrm{T}} \lambda-\mathrm{III}_{\mathrm{T}}=0
$$

This is called the Characteristic Equation, and the 3 coefficients are the first, second, and third invariants of the tensor t_{ij}.

Finding eigenvectors

$$
\lambda^{3}-\mathrm{I}_{\boldsymbol{T}} \lambda^{2}+\mathrm{II}_{\boldsymbol{T}} \lambda-\mathrm{III}_{\boldsymbol{T}}=0
$$

This is called the Characteristic Equation, and the 3 coefficients are the first, second, and third invariants of the tensor t_{i}.

$$
\begin{array}{r}
\mathrm{I}_{\mathrm{T}}=\mathrm{t}_{\mathrm{ii}}=\operatorname{tr} \mathrm{T} \\
\mathrm{II}_{\mathrm{T}}=\frac{1}{2}\left(\mathrm{t}_{\mathrm{ii}} \mathrm{t}_{\mathrm{jj}}-\mathrm{t}_{\mathrm{ij}} \mathrm{t}_{\mathrm{ji}}\right)=\frac{1}{2}\left[(\operatorname{tr} \mathrm{~T})^{2}-\operatorname{tr}\left(\mathrm{T}^{2}\right)\right] \\
\mathrm{III}_{\mathrm{T}}=\varepsilon_{i j k} \mathrm{t}_{1 \mathrm{i}} \mathrm{t}_{2 j} \mathrm{t}_{3 \mathrm{k}}=\operatorname{det} \mathrm{T}
\end{array}
$$

No matter what coordinate system we use to express the tensor T, these 3 special quantities always have the same 3 values.

Finding eigenvectors

$$
\lambda^{3}-\mathrm{I}_{\boldsymbol{T}} \lambda^{2}+\mathrm{II}_{\boldsymbol{T}} \lambda-\mathrm{III}_{\boldsymbol{T}}=0
$$

This is called the Characteristic Equation, and the 3 coefficients are the first, second, and third invariants of the tensor t_{ij}.

The cubic equation has 3 solutions $\lambda_{(1)}, \lambda_{(2)}$, and $\lambda_{(3)}$, which are all real for a symmetric tensor \mathbf{T} whose elements are real.

There is a direction $n_{i}^{(q)}$ associated with each eigenvalue $\lambda_{(q)}$.
We can find $\mathrm{n}_{\mathrm{i}}^{(\mathrm{q})}$ by solving

$$
\begin{gathered}
{\left[t_{i j}-\lambda_{(q)} \delta_{i j}\right] n_{i}^{(q)}=0 \quad(q=1,2,3)} \\
n_{i}^{(q)} n_{i}^{(q)}=1 \quad(q=1,2,3)
\end{gathered}
$$

To see how to do this, check out MSM Example 2.14 on page 32.

