ESS 411/511 Geophysical Continuum Mechanics Class #8

Highlights from Class #7 — Abigail Thienes

Today's highlights on Monday — Alexandria Vasquez-Hernandez

Warm-up (break-out rooms)

- Show that $a_{ik} b_{kj}$ is the same as multiplying two 3x3 matrices **A** and **B** together.
- Class- prep questions

$$\mathbf{Q}_{ij} = \mathbf{A}_{ij} + \mathbf{B}_{ij} \quad (1)$$

What property of **A**_{ii} makes it symmetric?

How can you make \mathbf{A}_{ij} from \mathbf{Q}_{ij} ?

What property of \mathbf{B}_{ij} makes it anti-symmetric?

How can you make \mathbf{B}_{ij} from \mathbf{Q}_{ij} ?

Show that Equation (1) holds with your \mathbf{A}_{ij} and \mathbf{B}_{ij} .

ESS 411/511 Geophysical Continuum Mechanics

For Monday class

 Please read Mase, Smelser, and Mase, CH 2 through Section 2.8 (tensor fields; Gauss' theorem)

Please also read Mase, Smelser, and Mase, CH 3 through Section 3.3

Your short CR/NC Pre-class prep writing assignment (1 point) in Canvas

- It will be due in Canvas at the start of class.
- I will send another message when it is posted in Canvas.

ESS 411/511 Geophysical Continuum Mechanics

Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Attenuation
- Mathematical tools vectors, tensors, coordinate changes
- Stress principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain Finite strain; infinitesimal strains
- Moments lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

Problem Sets

You are working on Problem Set #2

• Due in Canvas on Wednesday

Vector algebra

Lots of details in CH 2

- Are there points that are unclear?
- Please let me know if there are things you would like us to look at specifically.

Transformation of Cartesian Coordinates

An object such as vector \mathbf{v} is represented as v_j in coordinate system $Ox_1x_2x_3$ with unit coordinate vectors $\hat{\mathbf{e}}_i$

The same object (e.g. \mathbf{v}) is represented as v_j in coordinate system $Ox_1'x_2'x_3'$ with unit coordinate vectors $\hat{\mathbf{e}}_i'$

v is **not** rotated –

 its coordinates are just expressed in a different coordinate system

Transformation matrix

The new coordinate vectors \hat{e}'_i can be expressed in terms of the old coordinate vectors ê_i

$$\hat{e}'_1 = a_{11}\hat{e}_1 + a_{12}\hat{e}_2 + a_{13}\hat{e}_3 = a_{1j}\hat{e}_j$$
 $\hat{e}'_2 = a_{21}\hat{e}_1 + a_{22}\hat{e}_2 + a_{23}\hat{e}_3 = a_{2j}\hat{e}_j$
 $\hat{e}'_3 = a_{31}\hat{e}_1 + a_{32}\hat{e}_2 + a_{33}\hat{e}_3 = a_{3j}\hat{e}_j$
 $\hat{e}'_i = a_{ij}\hat{e}_j$

$$\begin{bmatrix} \hat{\mathbf{e}}_1' \\ \hat{\mathbf{e}}_2' \\ \hat{\mathbf{e}}_3' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} \hat{\mathbf{e}}_1 \\ \hat{\mathbf{e}}_2 \\ \hat{\mathbf{e}}_3 \end{bmatrix}$$
 A is the transformation matrix
$$\begin{bmatrix} x_3 \\ x_2' \end{bmatrix}$$

 a_{ii} is just the projection of the i^{th} new axis unit vector $\hat{\mathbf{e}}'_i$ onto the j^{th} old axis unit vector $\hat{\mathbf{e}}_j$ through their dot product $\hat{e}'_i \cdot \hat{e}_i$

Change of coordinate system for any order tensor R_{qm...n}

$$R'_{ij...k} = a_{iq}a_{jm}\cdots a_{kn}R_{qm...n}$$

Multiply by transformation matrix A once for each order in the tensor $R_{qm...n}$

Examples

- 0th order tensor (scalar) no a_{pq} factors $\theta' = \theta$
- 1st order tensor (vector) 1 a_{pq} factor $u'_i = a_{ij} u_i$
- 2nd order tensor $-2 a_{pq}$ factors $t'_{ij} = a_{im} a_{jn} t'_{mn}$

Proper and Improper changes of coordinates

```
det(A) = 1 is a rotation (proper)
```

det(A) = -1 is a reflection (improper)
(right-handed coordinate system becomes a
left-handed coordinate system (generally not
good ...)

We will use only right-handed coordinates

Principal values and directions (Eigenvalues and eigenvectors)

A 2nd order tensor s_{ij} maps a vector u_j onto another vector v_i $s_{ij}u_j = v_i$ In general u_i and v_i point in different directions.

It would be nice if we could find some special vectors u_j that mapped onto vectors v_i that were parallel to u_j . That could help us to find a coordinate system in which s_{ij} could be expressed more simply.

For example, stress in the rocks on a mountain side.

We know that there is no shear stress on the sloping surface.

 Maybe the stress tensor would be simpler using a coordinate system aligned with the mountain surface.

When t_{ij} is symmetric with real components, there will be some vectors n_i that do map onto a parallel vector.

$$t_{ij}n_j = \lambda n_i$$
 or $T \cdot \hat{\mathbf{n}} = \lambda \hat{\mathbf{n}}$

When n_j is a unit vector, it defines a principal direction or **eigenvector** of the tensor t_{ij} , and λ is called a principal value or **eigenvalue** of t_{ij} .

$$t_{ij} n_j - \lambda n_i = 0$$

Since
$$n_i = \delta_{ij} n_j$$

$$t_{ij} n_j - \lambda \delta_{ij} n_j = 0$$

or

$$(t_{ij} - \lambda \delta_{ij}) n_i = 0$$
 or in symbolic form, $(\mathbf{T} - \lambda \mathbf{I}) \cdot \mathbf{n} = 0$

$$(t_{ij} - \lambda \delta_{ij}) n_j = 0$$
 or in symbolic form, $(\mathbf{T} - \lambda \mathbf{I}) \cdot \mathbf{n} = 0$

$$\begin{aligned} \left(t_{11} - \lambda\right) n_1 + t_{12} n_2 + t_{13} n_3 &= 0 \\ t_{21} n_1 + \left(t_{22} - \lambda\right) n_2 + t_{23} n_3 &= 0 \\ t_{31} n_1 + t_{32} n_2 + \left(t_{33} - \lambda\right) n_3 &= 0 \end{aligned}$$

Obviously these equations are satisfied if $n_1 = n_2 = n_3 = 0$. But that is no help because we said n_j is a unit vector

Nontrivial solutions can exist (the equations are not independent) $|t_{ij} - \lambda \delta_{ij}| = 0$ if the determinant = 0

Evaluating the determinant produces a cubic equation in λ

$$\lambda^3 - I_T \lambda^2 + II_T \lambda - III_T = 0$$

This is called the *Characteristic Equation*, and the 3 coefficients are the *first*, second, and third invariants of the tensor t_{ij} .

$$\lambda^3 - I_T \lambda^2 + II_T \lambda - III_T = 0$$

This is called the *Characteristic Equation*, and the 3 coefficients are the *first*, *second*, *and third invariants* of the tensor t_{ii}.

$$\begin{split} I_T &= t_{ii} = tr \ T \\ II_T &= \frac{1}{2} \left(t_{ii} t_{jj} - t_{ij} t_{ji} \right) = \frac{1}{2} \left[\left(tr \ T \right)^2 - tr \left(T^2 \right) \right] \\ III_T &= \epsilon_{ijk} t_{1i} t_{2j} t_{3k} = det T \end{split}$$

No matter what coordinate system we use to express the tensor **T**, these 3 special quantities always have the same 3 values.

$$\lambda^3 - I_T \lambda^2 + II_T \lambda - III_T = 0$$

This is called the *Characteristic Equation*, and the 3 coefficients are the *first*, second, and third invariants of the tensor t_{ij} .

The cubic equation has 3 solutions $\lambda_{(1)}$, $\lambda_{(2)}$, and $\lambda_{(3)}$, which are all real for a symmetric tensor **T** whose elements are real.

There is a direction $n_i^{(q)}$ associated with each eigenvalue $\lambda_{(q)}$.

We can find $n_i^{(q)}$ by solving

$$\left[t_{ij} - \lambda_{(q)} \delta_{ij}\right] n_i^{(q)} = 0 \qquad (q = 1, 2, 3)$$

$$n_i^{(q)}n_i^{(q)}=1$$
 $(q=1,2,3).$

To see how to do this, check out MSM Example 2.14 on page 32.