ESS 411/511 Geophysical Continuum Mechanics Class \#9

Highlights from Class \#8 - Alexandria Vasquez-Hernandez
Today's highlights on Wednesday - Chloe Mcburney

For Wednesday class

- Please read Mase, Smelser, and Mase, Ch 3 through Section 3.6

Your short CR/NC Pre-class prep writing assignment (1 point) in Canvas

- It will be due in Canvas at the start of class.
- I will send another message when it is posted in Canvas.

ESS 411/511 Geophysical Continuum Mechanics

Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Attenuation
- Mathematical tools - vectors, tensors, coordinate changes
- Stress - principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain - Finite strain; infinitesimal strains
- Moments - lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

ESS 411/511 Geophysical Continuum Mechanics

How I see your class-prep assignments

- According to pedagogy experts, you learn better by doing your own reading, writing and discussing compared to listening to me repeat material in the text.
- The class-prep assignments are meant to help you get an initial idea about the topics coming up.
- Sometimes your answers before the class may miss the main point, or may be incomplete.
- That's OK. I am giving you the point anyway for thinking about it and writing down your thoughts. You are creating value in your education.
- I am not annotating your documents in Canvas, because I think you are figuring it out on your own in our subsequent break-out rooms and plenary discussions in class, without me adding comments again in Canvas $)^{-}$.

Problem Sets

Problem Set \#2 due in Canvas on Wednesday

Problem Set \#3 in Thursday session

ESS 411/511 Geophysical Continuum Mechanics Class \#9

Warm-up (break-out rooms)
Finding the eigenvalues and eigenvectors of a 3×3 tensor is complicated and "mathy".

- Explain in words why anyone would want to find the eigenvalues and eigenvectors of a 3×3 tensor. Why bother?

Class- prep questions (break-out rooms)

- Stress vector. What the blazes is it, anyway?

Principal values and directions
 (Eigenvalues and eigenvectors)

A $2^{\text {nd }}$ order tensor $s_{i j}$ maps a vector u_{j} onto another vector v_{i}

$$
\mathrm{s}_{\mathrm{ij}} u_{\mathrm{j}}=v_{\mathrm{i}}
$$

In general u_{j} and v_{i} point in different directions.
It would be nice if we could find some special vectors u_{j} that mapped onto vectors v_{i} that were parallel to u_{j}.
That could help us to find a coordinate system in which s_{ij} could be expressed more simply.

For example, stress in the rocks on a mountain side.
We know that there is no shear stress on the sloping surface.

- Maybe the stress tensor would be simpler using a coordinate system aligned with the mountain surface.

Finding eigenvectors

When t_{ij} is symmetric with real components, there will be some vectors n_{j} that do map onto a parallel vector.

$$
\mathrm{t}_{\mathrm{ij}} n_{\mathrm{j}}=\lambda n_{\mathrm{i}} \quad \text { or } \quad \mathrm{T} \cdot \hat{\mathrm{n}}=\lambda \hat{n}
$$

When n_{j} is a unit vector, it defines a principal direction or eigenvector of the tensor t_{ij}, and λ is called a principal value or eigenvalue of t_{ij}.

$$
\mathrm{t}_{\mathrm{ij}} n_{\mathrm{j}}-\lambda n_{\mathrm{i}}=0
$$

Since $n_{i}=\delta_{i j} n_{j}$

$$
\mathrm{t}_{\mathrm{ij}} n_{\mathrm{j}}-\lambda \delta_{\mathrm{ij}} n_{\mathrm{j}}=0
$$

or

$$
\left(\mathrm{t}_{\mathrm{ij}}-\lambda \delta_{\mathrm{ij}}\right) n_{\mathrm{j}}=0 \quad \text { or in symbolic form, }(\mathbf{T}-\lambda \mathrm{I}) \bullet \boldsymbol{n}=\mathbf{0}
$$

Let's work through an example

Example 2.14

Determine the principal values and principal directions of the second-order tensor \mathbf{T} whose matrix representation is

$$
\left[\mathrm{t}_{i j}\right]=\left[\begin{array}{lll}
5 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 3
\end{array}\right] .
$$

In order for n_{i} to be an eigenvector, n_{i} and $t_{i j} n_{j}$ must be parallel

$$
\mathrm{t}_{\mathrm{ij}} n_{\mathrm{j}}-\lambda n_{\mathrm{i}}=0
$$

Since $\quad n_{i}=\delta_{i j} n_{j}$

$$
\mathrm{t}_{\mathrm{ij}} n_{\mathrm{j}}-\lambda \delta_{\mathrm{ij}} n_{\mathrm{j}}=0
$$

Factor out $n_{\mathrm{j}}: \quad\left(\mathrm{t}_{\mathrm{ij}}-\lambda \delta_{\mathrm{ij}}\right) n_{\mathrm{j}}=0$

Let's work through an example

$\left(t_{11}-\lambda\right) n_{1}+t_{12} n_{2}+t_{13} n_{3}=0$
$t_{21} n_{1}+\left(t_{22}-\lambda\right) n_{2}+t_{23} n_{3}=0$
$t_{31} n_{1}+t_{32} n_{2}+\left(t_{33}-\lambda\right) n_{3}=0$
Obviously these equations are satisfied if $n_{1}=n_{2}=n_{3}=0$.
But that is no help because we said n_{j} is a unit vector

Nontrivial solutions can exist
(the equations are not independent) $\left|t_{i j}-\lambda \delta_{i j}\right|=0$ if the determinant $=0$

$$
\left|\begin{array}{ccc}
5-\lambda & 2 & 0 \\
2 & 2-\lambda & 0 \\
0 & 0 & 3-\lambda
\end{array}\right|=0
$$

So, expanding on the third row,

$$
(3-\lambda)\left(10-7 \lambda+\lambda^{2}-4\right)=0
$$

which factors into

$$
(3-\lambda)(6-\lambda)(1-\lambda)=0
$$

Let's work through an example

$$
(3-\lambda)(6-\lambda)(1-\lambda)=0
$$

So, the eigenvalues are: $\quad \lambda_{(1)}=3 \quad \lambda_{(2)}=6, \quad \lambda_{(3)}=1$
Now, find the 3 corresponding eigenvectors n_{j} by solving the equations ($\mathrm{t}_{\mathrm{ij}}-\lambda \delta_{\mathrm{ij}}$) $n_{\mathrm{j}}=0$ with each value of λ in turn:

$$
\begin{aligned}
& \left(t_{11}-\lambda\right) n_{1}+t_{12} n_{2}+t_{13} n_{3}=0 \\
& t_{21} n_{1}+\left(t_{22}-\lambda\right) n_{2}+t_{23} n_{3}=0 \\
& t_{21} n_{1}+t_{22} n_{2}+\left(t_{22}-\lambda\right) n_{2}=0
\end{aligned} \quad \text { and } \quad\left[t_{i j}\right]=\left[\begin{array}{lll}
5 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

With $\lambda_{(1)}=3: \quad 2 n_{1}+2 n_{2}=0$

$$
2 n_{1}-n_{2}=0
$$

The solution is: $n_{1}=n_{2}=0$ and since n_{j} must be a unit vector, $n_{3}=1$ and the first eigenvector is: $(0,0, \pm 1)$, i.e. $\hat{e ́}^{\prime}=\hat{e}_{3}$ So the new axes are just the old axes rotated about \hat{e}_{3}

Let's work through an example

Similarly, using $\lambda_{(2)}=6, \quad \begin{aligned}-n_{1}+2 n_{2} & =0 \\ 2 n_{1}-4 n_{2} & =0 \\ -3 n_{3} & =0\end{aligned}$
$n_{1}=2 n_{2}$ and since $n_{3}=0$,
And the unit-vector criterion gives

$$
\left(2 n_{2}\right)^{2}+n_{2}^{2}=1, \text { or } n_{2}= \pm 1 / \sqrt{5} \text { and } n_{1}= \pm 2 / \sqrt{5}
$$

So, the second eigenvector is: $\quad(\pm 2 / \sqrt{5}, \pm 1 / \sqrt{5}, 0)$

Let's work through an example

Similarly, using $\lambda_{(3)}=1$,

$$
\begin{aligned}
4 n_{1}+2 n_{2} & =0 \\
2 n_{1}+n_{2} & =0
\end{aligned}
$$

$n_{1}=2 n_{2}$ and since $n_{3}=0$,
And the unit-vector criterion gives

$$
\left(2 n_{2}\right)^{2}+n_{2}^{2}=1, \text { or } n_{2}= \pm 1 / \sqrt{5} \text {, and } n_{1}= \pm 2 / \sqrt{5}
$$

So, the third eigenvector is: $\quad(\pm 1 / \sqrt{5}, \mp 2 / \sqrt{5}, 0)$

And the
Transformation matrix
is:

Each row is an eigenvector \& \pm \frac{2}{\sqrt{5}} \& \pm \frac{1}{\sqrt{5}}

\pm \frac{1}{\sqrt{5}} \& \mp \frac{2}{\sqrt{5}} \& 0\end{array}\right], ~\)

Let's work through an example

$$
\left[\mathrm{a}_{\mathfrak{i j}}\right]=\left[\begin{array}{ccc}
0 & 0 & \pm 1 \\
\pm \frac{2}{\sqrt{5}} & \pm \frac{1}{\sqrt{5}} & 0 \\
\pm \frac{1}{\sqrt{5}} & \mp \frac{2}{\sqrt{5}} & 0
\end{array}\right]
$$

The rows provide 2 sets of eigenvectors, depending on the upper/lower + /- choices.

Delayed warm-up (break-out rooms)

- How would you decide which set to use?
- Suppose in a different problem, the $2^{\text {nd }}$ and $3^{\text {rd }}$ eigenvalues were equal. There will be some remaining ambiguity you won't be able to find 3 eigenvectors in the same way.
- What's going on? What have you learned about the directions in which $\mathrm{a}_{\mathrm{ij}} n_{\mathrm{j}}$ points in the same direction as n_{j} ?

