$\begin{array}{ll}\text { Highlights from Class \#9 } & \text { - Jensen DeGrande } \\ \text { Today's highlights on Friday } & \text { - Jaylen Generoso }\end{array}$

For Friday class

- Please read Mase, Smelser, and Mase, Ch 3 through Section 3.8
- Those of of you taking this class as ESS 511, please remember that on Friday, you will be giving a 60-second outline of your ideas so far about your term topic.

ESS 411/511 Geophysical Continuum Mechanics

Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Attenuation
- Mathematical tools - vectors, tensors, coordinate changes
- Stress - principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain - Finite strain; infinitesimal strains
- Moments - lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

Problem Sets

Problem Set \#2 due in Canvas today

Problem Set \#3 in Problem session tomorrow

ESS 411/511 Geophysical Continuum Mechanics Class \#10

Warm-up (groups)

Vectors and tensors get more interesting when they vary with time t and with position \boldsymbol{x} inside a body. Explain in words what is meant by:

- $\boldsymbol{v}(\boldsymbol{x}, t) \quad \sigma_{\mathrm{ij}}(\boldsymbol{x}, t)$
- $\begin{array}{cccc}v_{i} & v_{i, i} & v_{i, j} & \varepsilon_{i j k} \\ v_{k, j}\end{array}$
- $\begin{array}{ccccc}\sigma_{i j} & \sigma_{i i, k} & \sigma_{i j, k} & \sigma_{i j, k k} & \sigma_{i j, k l}\end{array}$
- $x_{i, j}=\delta_{i j}$

Class-prep for today

Choosing eigenvectors
Suppose you have found the 3 eigenvalues $I_{(q)}$ for $3 x 3$ tensor $t_{i j}$, and then the 3 corresponding eigenvectors $\pm n_{j}^{(9)}$. The sign ambiguity can arise because the tensor projects an eigenvector parallel to itself, but the projection vector $\mathrm{t}_{\mathrm{ij}} n_{\mathrm{j}}$ can point in either direction, i.e. either parallel to n_{j} or antiparallel.
So the transformation matrix is

$$
\left[\begin{array}{lll}
\pm n_{1}^{(1)} & \pm n_{2}^{(1)} & \pm n_{3}^{(1)} \\
\pm n_{1}^{(2)} & \pm n_{2}^{(2)} & \pm n_{3}^{(2)} \\
\pm n_{1}^{(3)} & \pm n_{2}^{(3)} & \pm n_{3}^{(3)}
\end{array}\right]
$$

where each row is one of the eigenvectors.

- What criterion would you use to decide which sign combination of signs to use on each eigenvector?
- Suppose in a different problem, the $2^{\text {nd }}$ and $3^{\text {rd }}$ eigenvalues $I_{(2)}$ and $I_{(3)}$ were equal. You can still find the first eigenvector, but because of the nonuniqueness, you won't be able to find 2 other eigenvectors in the same way as before.
- What's going on? You know that the other 2 eigenvectors must be orthogonal to the first one. What can you do to complete the new basis set?

Derivatives of tensors

A tensor can vary smoothly in space and time, so it has derivatives.

$$
\frac{\partial v_{j}}{\partial t}=\text { rate at which velocity vector is changing at a point. }
$$

$\nabla \vec{v}=v_{i, j}=$ how a velocity vector is changing with position at a point. There are 2 indices, so this is a 3×3 array.

$$
\left[\begin{array}{ccc}
\frac{\partial v_{1}}{\partial x_{1}} & \frac{\partial v_{1}}{\partial x_{2}} & \frac{\partial v_{1}}{\partial x_{3}} \\
\frac{\partial v_{2}}{\partial x_{1}} & \frac{\partial v_{2}}{\partial x_{2}} & \frac{\partial v_{2}}{\partial x_{3}} \\
\frac{\partial v_{3}}{\partial x_{1}} & \frac{\partial v_{3}}{\partial x_{2}} & \frac{\partial v_{3}}{\partial x_{3}}
\end{array}\right]
$$

Elements show how each vector component varies in each spatial direction.

Divergence

A tensor can vary smoothly in space and time, so it has derivatives.
Scalar - a scalar doesn't have divergence $:$

Vector $-\quad \nabla \bullet \vec{v}=v_{i, i}$

Tensor - $\quad \nabla \bullet T=t_{i j, i}$

$$
\left[\begin{array}{c}
t_{11,1}+t_{21,2}+t_{31,3} \\
t_{12,1}+t_{22,2}+t_{32,3} \\
t_{13,1}+t_{23,2}+t_{33,3}
\end{array}\right]
$$

Each row is the divergence of the corresponding column of \boldsymbol{T}

A divergence is 1 rank lower than the original quantity.

Gradient

A tensor can vary smoothly in space and time, so it has derivatives.

Scalar $\frac{\partial \phi}{\partial x_{j}}=\phi_{, j}$

Vector $\quad \nabla \vec{v}=\frac{\partial v_{i}}{\partial x_{j}}=v_{i, j}$

Tensor etc...

A gradient is 1 rank higher than the original quantity.

Integral theorems

We may want to know what is going on inside a body but have access only to its surface (or vice versa)

A volume V has surface S.

- Each small patch $\mathrm{d} S$ on the surface is defined by its normal vector n_{i}.

Divergence theorem $\int_{\mathcal{S}} t_{i j \ldots k} n_{q} d \mathcal{S}=\int_{\mathcal{V}} t_{i j \ldots k, q} d \mathcal{V}$
The total amount of $\mathrm{t}_{\mathrm{ij} . . . \mathrm{k}}$ directed out across S is the same as the total amount of spreading (divergence) everywhere inside V.

Special cases

Divergence theorem $\int_{\mathcal{S}} t_{i j \ldots k} n_{q} d \mathcal{S}=\int_{\mathcal{V}} t_{i j \ldots k, q} d \mathcal{V}$

$$
\int_{\mathcal{S}} v_{\mathrm{q}} \mathrm{n}_{\mathrm{q}} \mathrm{~d} \mathcal{S}=\int_{\mathcal{V}} v_{\mathrm{q}, \mathrm{q}} \mathrm{~d} \mathcal{V} \quad \text { or } \quad \int_{\mathcal{S}} v \cdot \widehat{n} \mathrm{~d} \mathcal{S}=\int_{\mathcal{V}} \operatorname{div} v \mathrm{~d} \mathcal{V}
$$

If density ρ is uniform, the total amount of "stuff" flowing out across S with velocity v (the flux across S) is the same as the total amount of spreading (divergence) of that "stuff" everywhere inside V.

Stokes theorem

C is the perimeter of a cap on an open surface.

- $\mathrm{d} \boldsymbol{x}$ is the tangent to the perimeter C.
- \boldsymbol{v} is the material velocity.

$\int_{\mathcal{S}} \varepsilon_{i j k} n_{i} v_{k, j} \mathrm{~d} S=\int_{\mathcal{C}} \nu_{k} \mathrm{~d} x_{k} \quad$ or $\quad \int_{\mathcal{S}} \widehat{n} \cdot(\boldsymbol{\nabla} \times \boldsymbol{v}) \mathrm{d} S=\int_{\mathcal{C}} v \cdot \mathrm{~d} \boldsymbol{x}$
If density ρ is uniform, the total circulation of "stuff" (curl) within the cap ("churning") is equal to the net flow along the perimeter C ("the racetrack").
$\left(\varepsilon_{\mathrm{ijk}} v_{\mathrm{j}, \mathrm{k}}\right.$ is curl of v$)$

Definition of a tensor

In any rectangular coordinate system, a tensor is defined by components that transform according to the rule

$$
R_{i j \ldots k}^{\prime}=a_{i q} a_{j m} \cdots a_{k n} R_{q m \ldots n}
$$

and where the basis vectors are related by

$$
\begin{gathered}
\hat{\mathbf{e}}_{\mathfrak{i}}^{\prime}=\mathfrak{a}_{\mathfrak{i j}} \hat{\mathbf{e}}_{\mathfrak{j}} \\
{\left[\begin{array}{l}
\hat{\mathbf{e}}_{1}^{\prime} \\
\hat{\mathbf{e}}_{2}^{\prime} \\
\hat{\mathbf{e}}_{3}^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
\hat{\mathbf{e}}_{1} \\
\hat{\mathbf{e}}_{2} \\
\hat{\mathbf{e}}_{3}
\end{array}\right]}
\end{gathered}
$$

Forces in a continuum

Body forces $\quad b_{i}$ force per volume Surface forces f_{i} force per area (on exterior or interior surfaces)

Newton's second law $\boldsymbol{F}=\mathrm{ma}$

$$
\int_{V} \rho(\vec{x}) b_{i} d V+\int_{S} t_{i}^{(\hat{n})} d S=\frac{d}{d t} \int_{V} \rho v_{i} d V
$$

