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Highlights from Class #10            – Jonathan Gates
Today’s highlights on Monday    – Jason Ott

For Monday class
• Please read Mase, Smelser, and Mase, Ch 3 through Section 3.11

For those of you taking this class as ESS 511, it is time for you 
to give a 60-second outline of your ideas so far about your 
term topic. 

• Jensen
• Alysa
• Jonathan
• Anna
• Peter
• John-Morgan
• Yiyu
• Jason
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Broad Outline for the Quarter
• Continuum mechanics in 1-D
• 1-D models with springs, dashpots, sliding blocks
• Attenuation
• Mathematical tools – vectors, tensors, coordinate changes 
• Stress – principal values,  Mohr’s circles for 3-D stress
• Coulomb failure, pore pressure, crustal strength
• Measuring stress in the Earth
• Strain – Finite strain; infinitesimal strains
• Moments – lithosphere bending; Earthquake moment magnitude
• Conservation laws 
• Constitutive relations for elastic and viscous materials
• Elastic waves; kinematic waves



Class-prep from Wednesday
Choosing eigenvectors 
Suppose you have found the 3 eigenvalues l(q) for 3x3 tensor tij, and then the 3 
corresponding eigenvectors ±nj

(q). The sign ambiguity can arise because the 
tensor projects an eigenvector parallel to itself, but the projection vector tij nj can 
point in either direction, i.e. either parallel to nj or antiparallel.
So the transformation matrix is

where each row is one of the eigenvectors.
• What criterion would you use to decide which combination of signs to use on 

each eigenvector?
• Suppose in a different problem, the 2nd and 3rd eigenvalues l(2) and l(3) were 

equal.   You can still find the first eigenvector, but because of the 
nonuniqueness, you won’t be able to find 2 other eigenvectors in the same 
way as before. 

• What’s going on?   You know that the other 2 eigenvectors must be orthogonal 
to the first one.  What can you do to complete the new basis set?  
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Class-prep questions for today
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Prep for Monday class
• Please read Mase, Smelser, and Mase, Ch 3 through Section 3.11 

Traction vectors on principal planes,  Mohr’s circles 
The traction vector  !"

($) expresses the force per unit area of the plane 
defined by ni.   Section 3.7 explains how to resolve the traction vector into 
its components sN and sS normal and parallel to the plane respectively, and 
shows how to find the maximum and minimum values of sN and sS.
With respect to faults at km scales, or layered rocks such as shales at the 
meter scale, describe how you think this might be useful.

Section 3.8 explains how to represent the state of stress at a point with 
Mohr’s circles.
How do you think the Mohr’s circle representation of stress tij might give 
potentially more insight than just the stress tensor tij itself?



Integral theorems

We may want to know what is going on inside a body 
but have access only to its surface  (or vice versa)

A volume V has surface S. 
• Each small patch dS on the surface is defined by its 

normal vector ni.

Divergence theorem

The total amount of tij…k directed out across S is the same as the total 
amount of spreading (divergence) everywhere inside V.   



Special cases

Divergence theorem

If density r is uniform, the total amount of “stuff” flowing out across S
with velocity v (the flux across S) is the same as the total amount of 
spreading (divergence) of that “stuff” everywhere inside V.   



Stokes theorem

If density r is uniform, the total circulation of “stuff” (curl) within the cap 
(“churning”) is equal to the net flow along the perimeter C (“the 
racetrack”).   

C is the perimeter of a cap on an open 
surface.  
• dx is the tangent to the perimeter C.
• v is the material velocity.

(eijkvj,k is curl of v)



Definition of a tensor

In any rectangular coordinate system, a tensor is defined 
by 9 components that transform according to the rule

and where the basis vectors are related by 

Definition of a tensor

In any rectangular coordinate system, a tensor is defined 
by 9 components that transform according to the rule

and where the basis vectors are related by 

!"# = &̂"' ( &̂#or



Density r in a continuum

Dm is the mass in a small 
volume DV around the 
point P.

r(x) = density  (mass per unit volume)



Forces in a continuum

Body forces      bi force per mass (e.g. gravity)
Surface  forces t(n)i force per area or traction sji nj

(on exterior or interior surfaces)

Newton’s second law   F = ma

In a continuum:

ρ(!x)
V
∫ bidV + ti

(n̂)

S
∫ dS = d

dt
ρvi

V
∫ dV



Traction and torque

fi = force on DS*
Mi = moment or torque on DS*  

(force x lever arm from center of DS*)



Traction

Traction vector acting at point P of plane 
element DS* whose normal vector is ni.



Torque
Torque causes material to spin
Mi = moment or torque on DS*   (force times 
lever arm from center of DS*)

The torque or moment must go to zero because the lever arm 
must go to zero as DS* gets smaller.

If it did not, the material would 
be churned and ripped apart 
internally …

(This is also why the stress tensor must be symmetric.)

ri
Po

FjMk = ri × Fj



A stress tensor has principal coordinates in which 
the shear stress vanish, so that the traction vector 
on the principal planes is parallel to the normal 
vector 



Momentum Conservation Equation

Divergence theorem for first term

Substitute in (1)

(1)

Volume V is arbitrary, so integrand must vanish for any V

Force equilibrium



If  a  stress tensor is not expressed in its principal coordinates 
• the traction vectors        on the coordinate planes may not be 

parallel to the coordinate vectors    , and 
• off-diagonal elements of tij may be nonzero.
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If  a  stress tensor is expressed in its principal coordinates 
• the traction vectors         on the coordinate planes must be 

parallel to the coordinate vectors    , and 
• off-diagonal elements t*ij must be zero.
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Momentum Conservation Equation

Collect volume terms

Volume V is arbitrary, so integrand must vanish for any V

(1)

Force equilibrium

Replace traction vector with stress tensor

(2)

Apply Divergence Theorem (3) to change surface 
integral into volume integral

(3)



Symmetry of stress tensor

As discussed in MSM, the stress tensor is symmetric because the 
moment on an infinitesimal surface element dS must go to zero.  
The text derives this more rigorously in Section 3.4.
The message to remember is that for stress -

tij = tji

The stress tensor can be reflected across its diagonal without 
changing.



Transformation laws for stress tensor

Section 3.5 goes over how to express the stress tensor (tij or sij) in 
different coordinate systems.
This is mainly a repeat of earlier ideas in Chapter 2 about 
transforming any tensor.

Section 3.6 goes over how to find the principal values (eigenvalues) of 
the stress tensor, how to find the principal directions (eigenvectors), 
and how to find the 3 scalar invariants of the stress tensor.
This is also mainly a repeat of earlier ideas in Chapter 2 about 
transforming any tensor.



Notation

Principal stresses sI > sII > sIII

or

Conventions:
• Compressive stresses are negative
• Principal stresses are numbered from largest (most positive) to smallest
• Other conventions are also used in other texts and in research literature, 

but this convention is most versatile and correct in all situations 



Notation

Scalar Invariants of the stress tensor

Determinant 

Trace 
Second invariant

These are the coefficients in the cubic characteristic equation when 
solving for the eigenvalues


