ESS 411/511 Geophysical Continuum Mechanics Class \#11
Highlights from Class \#10 - Jonathan Gates
Today's highlights on Monday - Jason Ott

For Monday class

- Please read Mase, Smelser, and Mase, Ch 3 through Section 3.11

For those of you taking this class as ESS 511, it is time for you to give a 60-second outline of your ideas so far about your term topic.

- Jensen
- Alysa
- Jonathan
- Anna
- Peter
- John-Morgan
- Yiyu
- Jason

ESS 411/511 Geophysical Continuum Mechanics

Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Attenuation
- Mathematical tools - vectors, tensors, coordinate changes
- Stress - principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain - Finite strain; infinitesimal strains
- Moments - lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

Class-prep from Wednesday

Choosing eigenvectors
Suppose you have found the 3 eigenvalues $I_{(q)}$ for $3 x 3$ tensor $t_{i j}$, and then the 3 corresponding eigenvectors $\pm n_{j}^{(9)}$. The sign ambiguity can arise because the tensor projects an eigenvector parallel to itself, but the projection vector $\mathrm{t}_{\mathrm{ij}} n_{\mathrm{j}}$ can point in either direction, i.e. either parallel to n_{j} or antiparallel.
So the transformation matrix is $\left[\begin{array}{ccc} \pm n_{1}^{(1)} & \pm n_{2}^{(1)} & \pm n_{3}^{(1)} \\ \pm n_{1}^{(2)} & \pm n_{2}^{(2)} & \pm n_{3}^{(2)} \\ \pm n_{1}^{(3)} & \pm n_{2}^{(3)} & \pm n_{3}^{(3)}\end{array}\right]$
where each row is one of the eigenvectors.

- What criterion would you use to decide which combination of signs to use on each eigenvector?
- Suppose in a different problem, the $2^{\text {nd }}$ and $3^{\text {rd }}$ eigenvalues $I_{(2)}$ and $I_{(3)}$ were equal. You can still find the first eigenvector, but because of the nonuniqueness, you won't be able to find 2 other eigenvectors in the same way as before.
- What's going on? You know that the other 2 eigenvectors must be orthogonal to the first one. What can you do to complete the new basis set?

Class-prep questions for today

Tractions inside volumes

Imagine an arbitrary surface defined by its normal vector n_{i} inside a continuum under a stress σ_{ij}. The stress vector or traction vector $t_{j}^{(n)}$ expresses the force exerted on a unit area of that plane.

1) How would you find the traction vector on plane n_{i} ?
2) How can you define the other side (the "back side") of that plane?
3) What might you expect the traction vector to be on that "back side" of the plane n_{i} ?
4) What conservation law have you probably invoked in your answer to 3)?

ESS 411/511 Geophysical Continuum Mechanics Class \#11

Prep for Monday class

- Please read Mase, Smelser, and Mase, Ch 3 through Section 3.11

Traction vectors on principal planes, Mohr's circles

The traction vector $t_{j}^{(n)}$ expresses the force per unit area of the plane defined by n_{i}. Section 3.7 explains how to resolve the traction vector into its components s_{N} and s_{S} normal and parallel to the plane respectively, and shows how to find the maximum and minimum values of s_{N} and s_{S}.
With respect to faults at km scales, or layered rocks such as shales at the meter scale, describe how you think this might be useful.

Section 3.8 explains how to represent the state of stress at a point with Mohr's circles.
How do you think the Mohr's circle representation of stress t_{ij} might give potentially more insight than just the stress tensor t_{ij} itself?

Integral theorems

We may want to know what is going on inside a body but have access only to its surface (or vice versa)

A volume V has surface S.

- Each small patch $\mathrm{d} S$ on the surface is defined by its normal vector n_{i}.

Divergence theorem $\int_{\mathcal{S}} t_{i j \ldots k} n_{q} d \mathcal{S}=\int_{\mathcal{V}} t_{i j \ldots k, q} d \mathcal{V}$
The total amount of $\mathrm{t}_{\mathrm{ij} . . . \mathrm{k}}$ directed out across S is the same as the total amount of spreading (divergence) everywhere inside V.

Special cases

Divergence theorem $\int_{\mathcal{S}} t_{i j \ldots k} n_{q} d \mathcal{S}=\int_{\mathcal{V}} t_{i j \ldots k, q} d \mathcal{V}$

$$
\int_{\mathcal{S}} v_{\mathrm{q}} \mathrm{n}_{\mathrm{q}} \mathrm{~d} \mathcal{S}=\int_{\mathcal{V}} v_{\mathrm{q}, \mathrm{q}} \mathrm{~d} \mathcal{V} \quad \text { or } \quad \int_{\mathcal{S}} v \cdot \widehat{n} \mathrm{~d} \mathcal{S}=\int_{\mathcal{V}} \operatorname{div} v \mathrm{~d} \mathcal{V}
$$

If density ρ is uniform, the total amount of "stuff" flowing out across S with velocity v (the flux across S) is the same as the total amount of spreading (divergence) of that "stuff" everywhere inside V.

Stokes theorem

C is the perimeter of a cap on an open surface.

- $\mathrm{d} \boldsymbol{x}$ is the tangent to the perimeter C.
- \boldsymbol{v} is the material velocity.

$\int_{\mathcal{S}} \varepsilon_{i j k} n_{i} \nu_{k, j} \mathrm{~d} \mathcal{S}=\int_{\mathcal{C}} \nu_{k} \mathrm{~d} x_{k} \quad$ or $\quad \int_{\mathcal{S}} \widehat{n} \cdot(\boldsymbol{\nabla} \times \boldsymbol{v}) \mathrm{d} \mathcal{S}=\int_{\mathcal{C}} v \cdot \mathrm{~d} \boldsymbol{x}$
If density ρ is uniform, the total circulation of "stuff" (curl) within the cap ("churning") is equal to the net flow along the perimeter C ("the racetrack").

$$
\left(\varepsilon_{\mathrm{ijk}} v_{\mathrm{j}, \mathrm{k}} \text { is curl of } v\right)
$$

Definition of a tensor

In any rectangular coordinate system, a tensor is defined by 9 components that transform according to the rule

$$
R_{i j \ldots k}^{\prime}=a_{i q} a_{j m} \cdots a_{k n} R_{q m \ldots n}
$$

and where the basis vectors are related by

$$
\begin{aligned}
\hat{\boldsymbol{e}}_{\mathfrak{i}}^{\prime} & =\mathrm{a}_{\mathfrak{i j}} \hat{\boldsymbol{e}}_{\mathfrak{j}} \\
\text { or } \quad a_{i j} & =\hat{e}_{i}^{\prime} \cdot \hat{e}_{j}
\end{aligned}
$$

Density ρ in a continuum

Δm is the mass in a small volume ΔV around the point P.
$\rho(\boldsymbol{x})=$ density (mass per unit volume)

Forces in a continuum

Body forces $\quad b_{i}$ force per mass (e.g. gravity)
Surface forces $t^{(n)}{ }_{\mathrm{i}}$ force per area or traction $\sigma_{\mathrm{ji}} n_{\mathrm{j}}$ (on exterior or interior surfaces)

Newton's second law $\boldsymbol{F}=\mathrm{ma}$

In a continuum:

$$
\int_{V} \rho(\vec{x}) b_{i} d V+\int_{S} t_{i}^{(\hat{n})} d S=\frac{d}{d t} \int_{V} \rho v_{i} d V
$$

Traction and torque

$f_{\mathrm{i}}=$ force on ΔS^{*}
$M_{\mathrm{i}}=$ moment or torque on ΔS^{*}
(force x lever arm from center of ΔS^{*})

$$
\lim _{\Delta \delta^{*} \rightarrow 0} \frac{\Delta f_{i}}{\Delta \delta^{*}}=\frac{d f_{i}}{d \delta^{*}}=t_{i}^{(\hat{r})}
$$

$$
\lim _{\Delta S^{*} \rightarrow 0} \frac{\Delta M_{i}}{\Delta S^{*}}=0
$$

Traction

Traction vector acting at point P of plane element ΔS^{*} whose normal vector is n_{i}.

Torque

Torque causes material to spin $M_{\mathrm{i}}=$ moment or torque on ΔS^{*} (force times lever arm from center of ΔS^{*})

$$
\mathrm{M}_{\mathrm{k}}=r_{\mathrm{i}} \times F_{\mathrm{j}} \quad \underset{\mathrm{P}_{\mathrm{i}}}{ } \mathrm{r}_{\mathrm{i}} F_{\mathrm{j}}
$$

The torque or moment must go to zero because the lever arm must go to zero as ΔS^{*} gets smaller.

If it did not, the material would be churned and ripped apart internally ...
(This is also why the stress tensor must be symmetric.)

A stress tensor has principal coordinates in which the shear stress vanish, so that the traction vector on the principal planes is parallel to the normal vector

(a) Traction vector at point \mathbf{P} for an arbitrary plane whose normal is n_{i}.

(b) Traction vector at point \mathbf{P} for a principal plane whose normal is n_{i}^{*}.

Momentum Conservation Equation

Force equilibrium

$$
\begin{equation*}
\int_{\mathcal{S}} t_{i}^{(\hat{\jmath})} d \mathcal{S}+\int_{\mathcal{V}} \rho b_{i} d \mathcal{V}=0 \tag{1}
\end{equation*}
$$

Substitute in (1)

$$
\int_{\mathcal{V}}\left(t_{j i, j}+\rho b_{i}\right) d \mathcal{V}=0
$$

Volume V is arbitrary, so integrand must vanish for any V

$$
t_{j i, j}+\rho b_{i}=0
$$

If a stress tensor is not expressed in its principal coordinates

- the traction vectors $\hat{t}_{i}^{(\hat{n})}$ on the coordinate planes may not be parallel to the coordinate vectors t_{11}^{*} and
- off-diagonal elements of t_{ij} may be nonzero.

If a stress tensor is expressed in its principal coordinates

- the traction vectors $\hat{t}_{i}^{(\hat{n})}$ on the coordinate planes must be parallel to the coordinate vectors \hat{n}_{i}^{*}, and
- off-diagonal elements $\mathrm{t}^{*}{ }_{\mathrm{ij}}$ must be zero.

Momentum Conservation Equation

Force equilibrium

$$
\begin{equation*}
\int_{\mathcal{S}} t_{i}^{(\widehat{\mathbf{n}})} d \mathcal{S}+\int_{\mathcal{V}} \rho b_{i} d \mathcal{V}=0 \tag{1}
\end{equation*}
$$

Replace traction vector with stress tensor

$$
\begin{equation*}
\mathrm{t}_{\mathrm{i}}^{(\hat{\mathfrak{n}})}=\mathrm{t}_{\mathrm{ji}} \mathrm{n}_{\mathrm{j}} \tag{2}
\end{equation*}
$$

Apply Divergence Theorem (3) to change surface integral into volume integral

$$
\begin{equation*}
\int_{\mathcal{S}} t_{j i} n_{j} d \mathcal{S}=\int_{\mathcal{V}} t_{j i, j} d \mathcal{V} \tag{3}
\end{equation*}
$$

Collect volume terms

$$
\int_{\mathcal{V}}\left(t_{j i, j}+\rho b_{i}\right) d \mathcal{V}=0
$$

Volume V is arbitrary, so integrand must vanish for any V

$$
\mathrm{t}_{\mathfrak{j i}, \mathrm{j}}+\rho \mathrm{b}_{\mathfrak{i}}=0
$$

Symmetry of stress tensor

As discussed in MSM, the stress tensor is symmetric because the moment on an infinitesimal surface element dS must go to zero. The text derives this more rigorously in Section 3.4. The message to remember is that for stress -

$$
\mathrm{t}_{\mathrm{ij}}=\mathrm{t}_{\mathrm{ji}}
$$

The stress tensor can be reflected across its diagonal without changing.

Transformation laws for stress tensor

Section 3.5 goes over how to express the stress tensor $\left(\mathrm{t}_{\mathrm{ij}}\right.$ or $\left.\sigma_{\mathrm{ij}}\right)$ in different coordinate systems.
This is mainly a repeat of earlier ideas in Chapter 2 about transforming any tensor.

Section 3.6 goes over how to find the principal values (eigenvalues) of the stress tensor, how to find the principal directions (eigenvectors), and how to find the 3 scalar invariants of the stress tensor. This is also mainly a repeat of earlier ideas in Chapter 2 about transforming any tensor.

Notation

Principal stresses $\sigma_{\mathrm{l}}>\sigma_{\mathrm{II}}>\sigma_{\mathrm{III}}$

$$
\left[t_{i j}^{*}\right]=\left[\begin{array}{ccc}
\sigma_{(1)} & 0 & 0 \\
0 & \sigma_{(2)} & 0 \\
0 & 0 & \sigma_{(3)}
\end{array}\right] \quad \text { or } \quad\left[t_{i j}^{*}\right]=\left[\begin{array}{ccc}
\sigma_{I} & 0 & 0 \\
0 & \sigma_{I I} & 0 \\
0 & 0 & \sigma_{I I I}
\end{array}\right]
$$

Conventions:

- Compressive stresses are negative
- Principal stresses are numbered from largest (most positive) to smallest
- Other conventions are also used in other texts and in research literature, but this convention is most versatile and correct in all situations

Notation

Scalar Invariants of the stress tensor
These are the coefficients in the cubic characteristic equation when solving for the eigenvalues

$$
\begin{gathered}
\left|\mathrm{t}_{\mathrm{ij}}-\lambda \delta_{i j}\right|=0 \\
\lambda^{3}-\mathrm{I}_{\mathbf{T}} \lambda^{2}+\mathrm{II}_{\mathbf{T}} \lambda-\mathrm{III}_{\mathbf{T}}=0
\end{gathered}
$$

Trace

$$
\mathrm{I}_{\mathbf{T}}=\mathrm{t}_{\mathrm{ii}}=\operatorname{tr} \mathbf{T},
$$

Second invariant $\quad \mathrm{II}_{\mathbf{T}}=\frac{1}{2}\left[\mathrm{t}_{\mathrm{ii}} \mathrm{t}_{\mathrm{jj}}-\mathrm{t}_{\mathrm{ij}} \mathrm{t}_{\mathrm{ij}}\right]=\frac{1}{2}\left[(\operatorname{tr} \mathbf{T})^{2}-\operatorname{tr} \mathrm{T}^{2}\right]$
Determinant $\quad I I I T=\varepsilon_{i j k} t_{1 i} t_{2 j} t_{3 k}=\operatorname{det} T$.

