ESS 411/511 Geophysical Continuum Mechanics Class #15

Highlights from Class #14 — Alysa Fintel Today's highlights on Wednesday – Jensen DeGrande

Our text doesn't cover our next topics very thoroughly, so we will use a few other sources, which are posted on the class web site under READING & NOTES. https://courses.washington.edu/ess511/NOTES/notes.shtml

- Stein and Wysession 5.7.2
- Stein and Wysession 5.7.3/4
- Raymond notes on failure

Also see slides about upcoming topics

Failure and Mohr's circles – slides

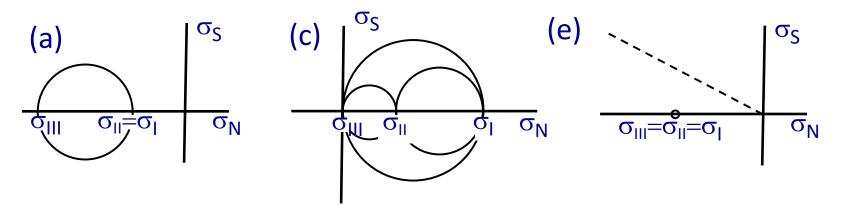
ESS 411/511 Geophysical Continuum Mechanics

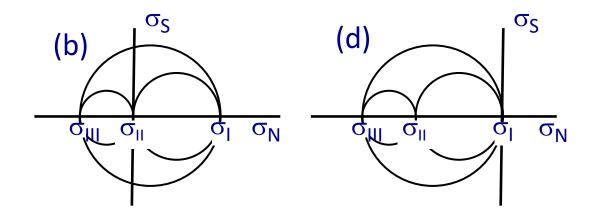
Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Attenuation
- Mathematical tools vectors, tensors, coordinate changes
- Stress principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain Finite strain; infinitesimal strains
- Moments lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

Warm-up questions – (break-out)

Explain what's going on in each case.



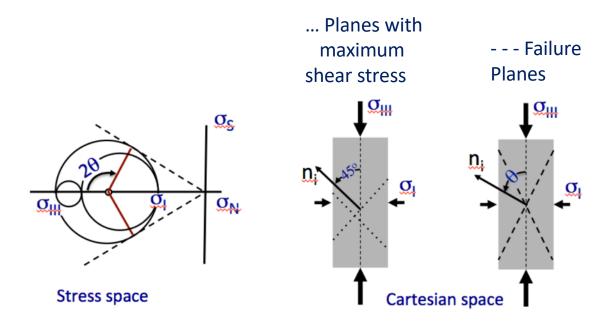


(f) $p = -\sigma_{ii}/3$

- What is p?
- Why the minus sign?

Warm-up II

Greatest shear stress is on planes marked with normal vectors n_i at 45° to σ_{III} . But failure actually happens on planes marked ---- at an angle θ >45° between n_i and σ_{III} Why is failure **not** on the plane with maximum shear stress? All surfaces are roughs at some scale. Relate this failure angle to how one rough surface slides over another rough surface. Failure planes --- are defined by their normal vectors n_i . Why are there 2 conjugate failure planes? Relate this to the Mohr's circle.



Class-prep questions for today (break-out)

Failure of materials

Last class, we looked at frictional sliding on preexisting fractures or faults with a coefficient of friction μ .

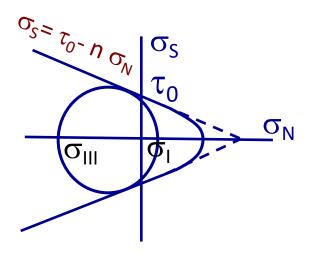
• What physical characteristics of a surface cause friction?

Now we are going to actually break new rocks.

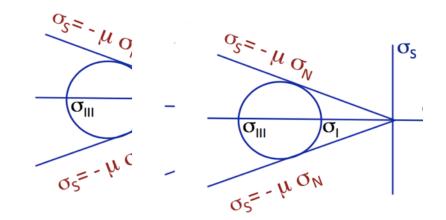
Mohr–Coulomb failure

 $\sigma_{\rm S}$ = τ_0 - n $\sigma_{\rm N}$

- n = *coefficient of internal friction* for fracture on a new fault surface
- τ_0 = cohesion of the material



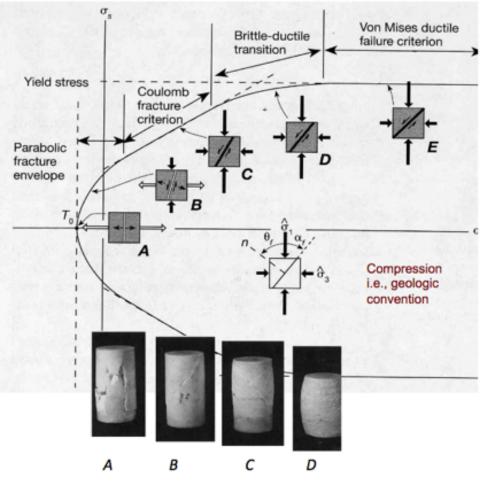
- Explain what you think n and τ_0 might mean in terms of micro-scale processes at the microcrack, crystalline, or lattice scales.
- Why do you think the failure envelope is rounded off at the right? Think about the sign of σ_{N} and the processes that might contribute to internal friction.



Class-prep questions for Wednesday Class_16

Style of Failure under Various Normal Stresses σ_N

The figure shows the failure envelope and failure modes in stress space, based on experiments on rocks subjected to a range of normal stresses _N. Note that these authors used the convention that compression is positive (yuck ...)



- Describe in words what is happening in this generalization of the failure envelopes that we have discussed in class.
- In a sentence or two for each, describe characteristics of the failure mode in each of the 5 stress regimes *A*, *B*, *C*, *D*, and *E*. The regime names, the angles of the failure planes, and the visual states of the samples after the experiments ended may be helpful.

4 Conventions in Stress Polarity

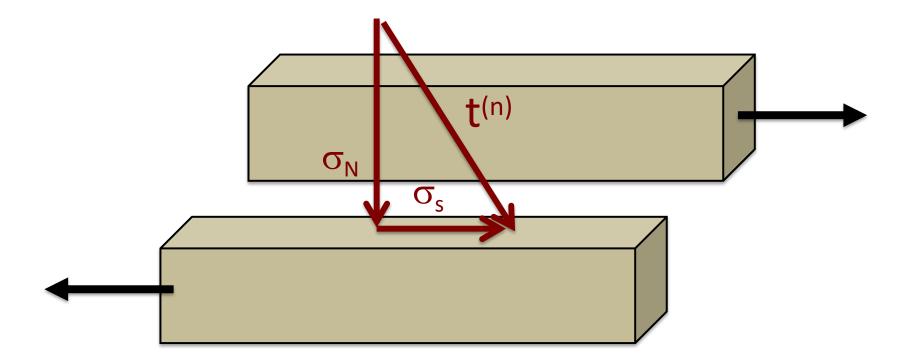
Engineering/Mathematical convention: Criterion 1: Positive σ_{ii} * signifies extension Criterion 2: Order $\sigma_{I} > \sigma_{II} > \sigma_{III}$ (Mase & Mase) or

 $\sigma_{I} < \sigma_{II} < \sigma_{III}$ (Stein & Wysession)

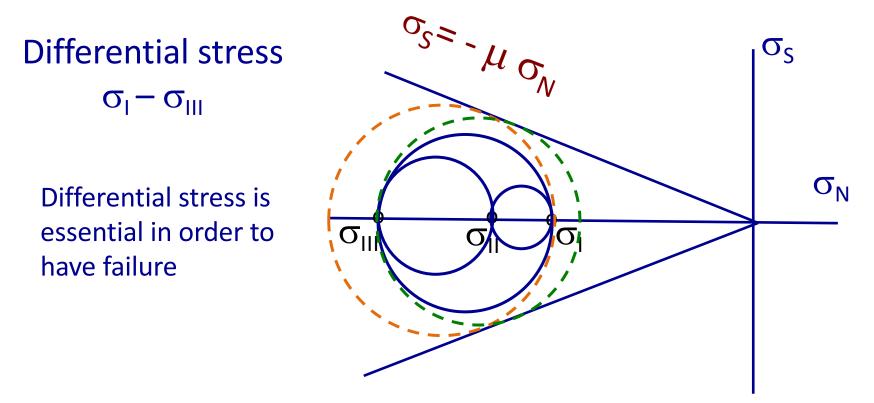
 $\begin{array}{l} \mbox{Geologic/Tectonic/Rock Mechanics convention:} \\ \mbox{Criterion 1: Positive } \sigma_{ii} * signifies compression \\ & (not a tensor!! Why not?) \\ \mbox{Criterion 2: Order } \sigma_{I} > \sigma_{II} > \sigma_{III} \mbox{(Twiss & Moores)} \\ & or \\ & \sigma_{I} < \sigma_{II} < \sigma_{III} \mbox{(?)} \end{array}$

* No sum implied

Sliding friction



 σ_{s} = - $\mu \sigma_{N}$ μ is *coefficient of friction* for sliding on a pre-existing break

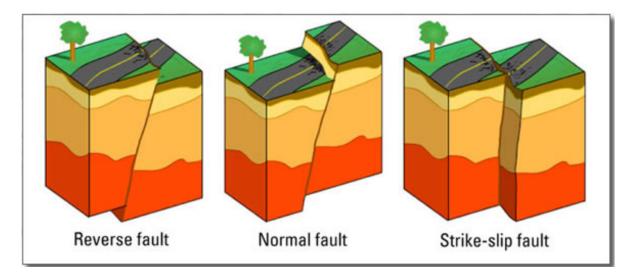


How could we change the stress state in order to cause failure?

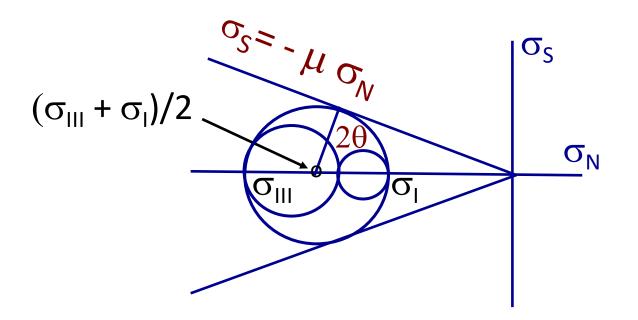
- Hold σ_1 make σ_{111} more negative (squeeze harder in x_3)
- Hold σ_{III} , make σ_I less negative (don't squeeze as hard in x_1)

Types of faults

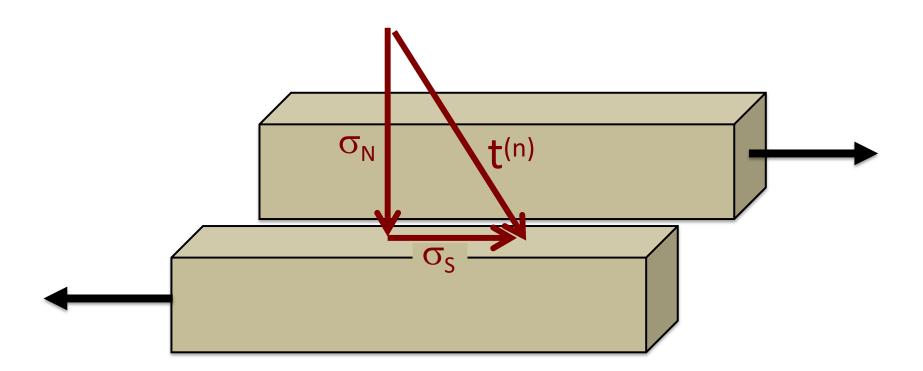
The Earth's surface is traction-free, so one of the principal directions is generally vertical



What are the orientations of the principal axes of stress \hat{e}_1^* , \hat{e}_2^* , \hat{e}_3^* in each case?



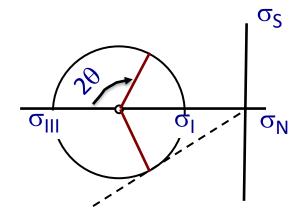
Mohr-Coulomb Fracture

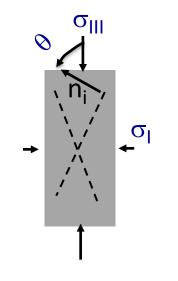


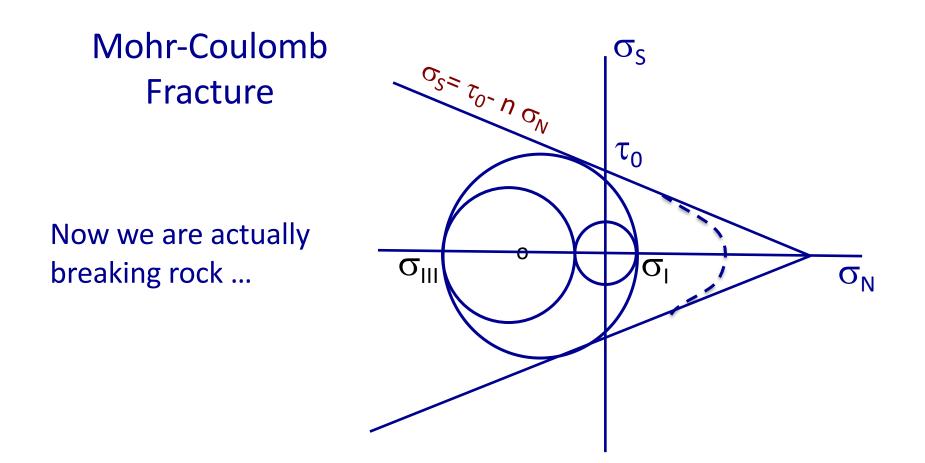
 $\sigma_{s} = \tau_{0} - n \sigma_{N}$ n is *coefficient of internal friction* for fracture on a new fault surface τ_{0} is cohesion of the material in absence of any confining stress σ_{N}

Failure in shear

- Why is failure is not on the plane with maximum shear stress?
- Why are there 2 conjugate failure planes?







 $\sigma_{s} = \tau_{0} - n \sigma_{N}$ n is *coefficient of internal friction* for fracture on a new fault surface τ_{0} is cohesion of the material in absence of any confining stress σ_{N}

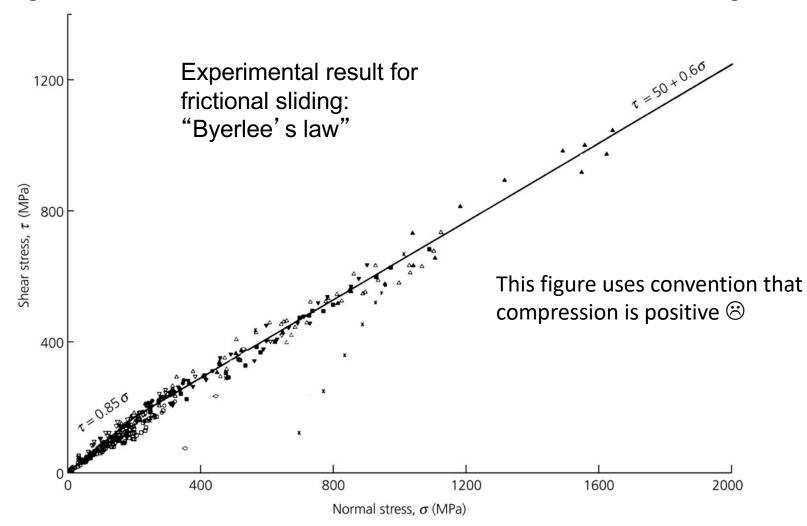


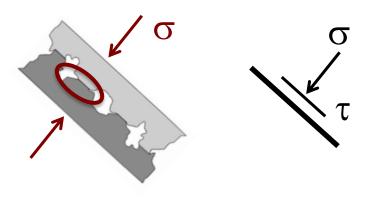
Figure 5.7-10: Relation between shear stress and normal stress for frictional sliding.

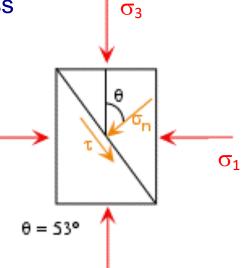
Lab experiments show a linear relation between the maximum shear stress that rocks can support at any given normal stress. This is called Byerlee's Law.

 $\tau \approx -.85\overline{\sigma}$ $\overline{\sigma} < 200$ MPa $\tau \approx 50 - .6\overline{\sigma}$ $\overline{\sigma} > 200$ MPa.

Coulomb stress

- Notion of friction:
 - More shear stress τ needed to overcome increase in normal stress σ and cause fault to slip Byerlee's law is an example
- Coulomb stress
 - $\sigma_{\rm S} = \tau \mu \left(\sigma_{\rm N} p\right)$
 - where μ is intrinsic coefficient of friction, p is pore pressure (*not* the mean stress p=- $\sigma_{ii}/3$, need to be careful of context)
- Basis is that real area of contact (much smaller than apparent area) is controlled by normal stress
 - deformation of asperities in response to normal stress
 - harder to over-ride asperities at higher normal stress





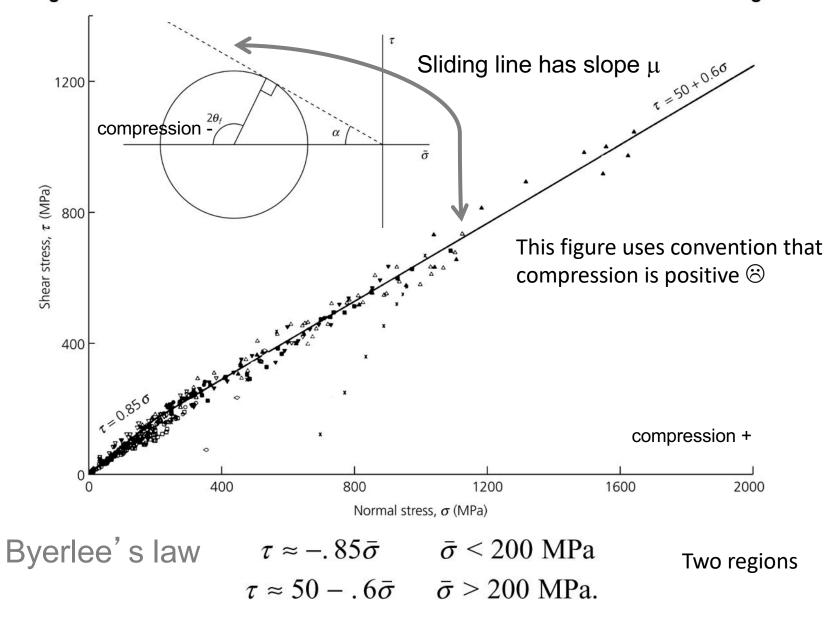
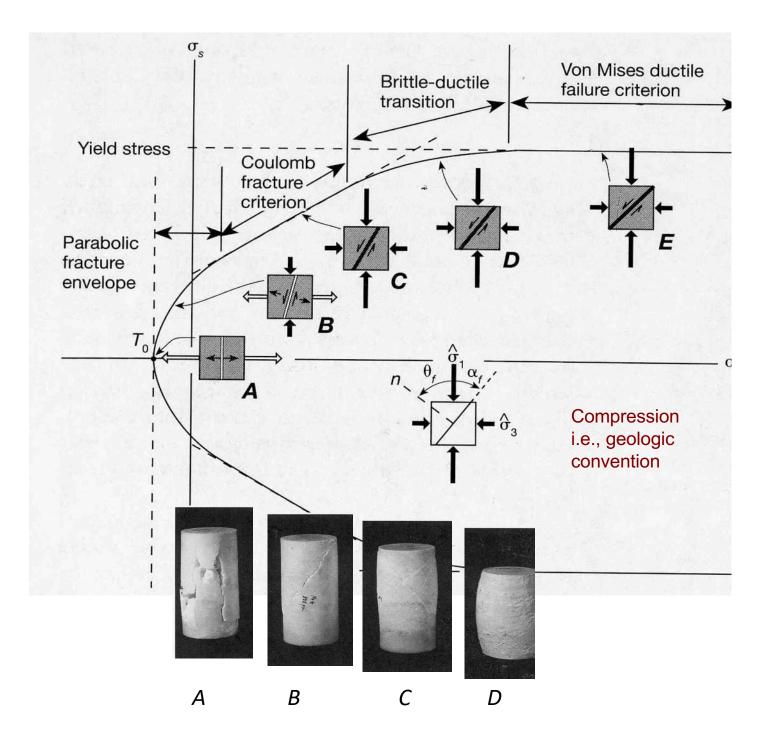


Figure 5.7-10: Relation between shear stress and normal stress for frictional sliding.



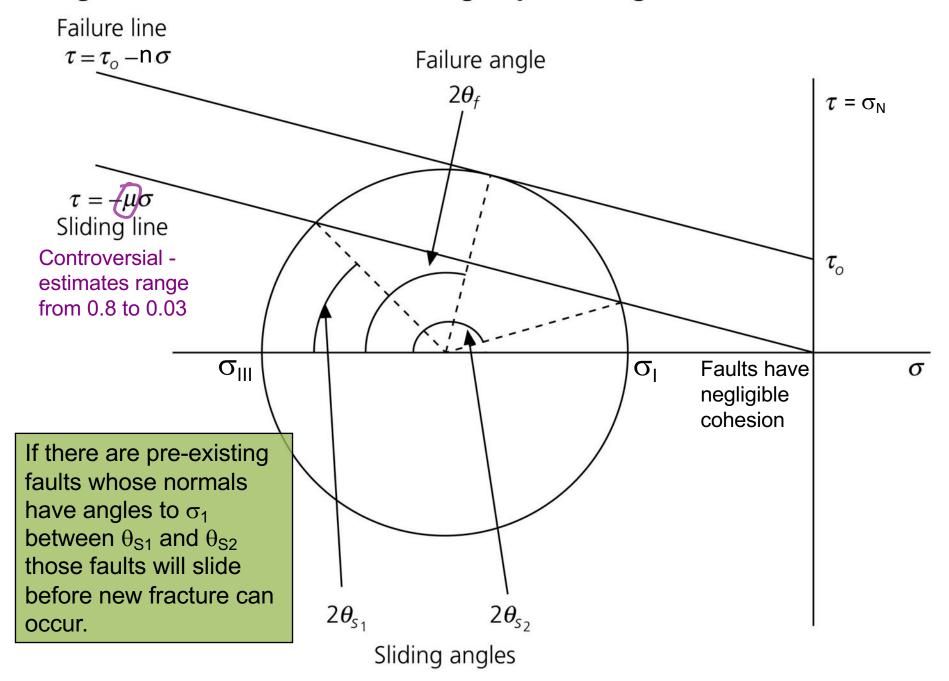


Figure 5.7-9: Mohr's circle for sliding on preexisting faults.