ESS 411/511 Geophysical Continuum Mechanics Class #18

Highlights from Class #17	 Abigail Thienes
Today's highlights on Friday	_
Wednesday is Veterar	n's Day)

Our text doesn't cover our next topics very thoroughly, so we will use a few other sources, which are posted on the class web site under READING & NOTES. https://courses.washington.edu/ess511/NOTES/notes.shtml

- Stein and Wysession 5.7.2
- Stein and Wysession 5.7.3/4
- Raymond notes on failure

Also see slides about current topics

Failure and Mohr's circles – slides

Your short CR/NC Pre-class prep writing assignment (1 point) in Canvas

- It will be due in Canvas at the start of class.
- I will send another message when it is posted in Canvas.

ESS 411/511 Geophysical Continuum Mechanics

Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Attenuation
- Mathematical tools vectors, tensors, coordinate changes
- Stress principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain Finite strain; infinitesimal strains
- Moments lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

Warm-up (Break-out rooms) Hydrostatic stress and Overburden stress

$$P_{\rm W} \approx 1000 \, {\rm kg \ m^{-3}}$$
 At 8 km depth:
 $\rho_{\rm r} \approx 2700 \, {\rm kg \ m^{-3}}$ • Estimate hyon $g \approx 10 \, {\rm m \ s^{-2}}$ • Estimate over $z = 8 \, {\rm km}$

- Estimate hydrostatic stress $p_w = \rho_w gz$ in MPa
 - Estimate overburden stress $p_r = \rho_r gz$ in MPa
 - Relate p_r at 8 km to Byerlee's Law

Hydrostatic stress and Overburden stress

```
P_{\rm w} \approx 1000 \text{ kg m}^{-3} p_{\rm r} = \rho_{\rm r} gz \approx 2700 \text{ kg m}^{-3} \approx 2700 \text{ kg m}^{-3} \times 10 \text{ m s}^{-2} \times 8 \times 10^3 \text{ m} g \approx 10 \text{ m s}^{-2} = 216 \times 10^3 \text{ kg m s}^{-2} / \text{m}^2 = 216 \text{ MPa} p_{\rm w} = \rho_{\rm w} gz \approx 1000 \text{ kg m}^{-3} \times 10 \text{ m s}^{-2} \times 8 \times 10^3 \text{ m} = 80 \times 10^3 \text{ kg m s}^{-2} / \text{m}^2 = 80 \text{ MPa}
```

This assumes that water is connected to the free surface But p_w can be

- less if rocks are dry
- More if water is trapped in formations and pressurized by p_r

Figure 5.7-28: Modeling the deformation of South America with a viscoelastic-plastic crust.

 Δt

➤ Time

Class-prep questions for today (break-out rooms)

Influence of pore pressure p_f on fault slip

Fluid in rock pores and cracks is a lubricant, and fluid pressure p_f is a non-negative quantity.

The frictional failure criterion is modified when pore fluid is present.

$$\sigma_{\rm S} = \tau_0 - m \left(\sigma_{\rm N} + p_f \right)$$

- o τ_0 is cohesion on the fault (see Byerlee's Law for $\sigma_N > 200$ MPa)
- \circ μ is coefficient of friction
- o p_f is pore pressure (**not** the mean stress p=- $\sigma_{ii}/3$)
- What is the fluid doing at the microscale to enhance slip? (Think about the asperities)
- Explain how the Mohr's circles below illustrate the role of pore pressure.

Coulomb stress and rock fracture

- Notion of friction:
 - More shear stress τ is needed to overcome increase in normal stress σ and cause a fault to slip Byerlee's law is an example
- Coulomb stress
 - $\quad \sigma_{S} = \tau_{0} \mu \left(\sigma_{N} + p_{f} \right)$
 - where μ is intrinsic coefficient of friction, p_f is pore pressure (*not* the mean stress p=- σ_{ii} /3, need to be careful of context)
- The real area of contact (much smaller than apparent area) is controlled by normal stress
 - deformation of asperities in response to normal stress increases contact area
 - harder to over-ride asperities at higher normal stress

Friction

$$\sigma_{S} = \tau_{0} - \mu \left(\sigma_{N} + p_{f} \right)$$

- µ is *coefficient of friction* for sliding on an existing fault
- τ_0 is cohesion of the fault (generally small)
- p_f is fluid pore pressure

Fracture

$$\sigma_{S} = \tau_{0} - n \left(\sigma_{N} + p_{f} \right)$$

- n is *coefficient of internal friction* for fracture on a new fault
- τ_0 is cohesion of the material in absence of any confining stress σ_N
- p_f is fluid pore pressure

Figure 5.7-3: Rheology of rocks subjected to large compressive stresses.

Stress-strain relation for ductile flow

Laboratory experiments on minerals find ductile flow to be:

$$\frac{de}{dt} = \dot{e} = f(\sigma) \underbrace{A \exp[-(E^* + PV^*)/RT]}_{\text{viscosity}^{-1}}$$

T = temperature

R =the gas constant

P is pressure

 $f(\sigma)$ = function of the stress difference $|\sigma_1 - \sigma_3|$

A = a constant

 E^* , V^* = activation energy and volume (effects of T and P) mineral-specific

In terms of the principal stresses,

$$f(\sigma) = |\sigma_1 - \sigma_3|^n$$

$$\dot{e} = |\sigma_1 - \sigma_3|^n A \exp[-(E^* + PV^*)/RT]$$

The rheology of such fluids is characterized by a power law. If n = 1 the material is called *Newtonian*, whereas a non-Newtonian fluid with n = 3 is often used to represent the mantle.

The viscosity depends on both temperature and pressure

$$\eta = (1/2A) \exp[(E^* + PV^*)/RT]$$

The viscosity decreases exponentially with temperature, and increases exponentially with pressure!

Example: a common flow law for dry olivine is:

$$\dot{e} = 7 \times 10^4 |\sigma_1 - \sigma_3|^3 \exp\left(\frac{-0.52 \text{ MJ/mol}}{RT}\right)$$

for
$$|\sigma_1 - \sigma_3| \le 200 \text{ MPa}$$

= 5.7 × 10¹¹ exp
$$\left[\frac{-0.54 \text{ MJ/mol}}{RT} \left(1 - \frac{|\sigma_1 - \sigma_3|}{8500}\right)^2\right]$$

for
$$|\sigma_1 - \sigma_3| \ge 200$$
 MPa

where \dot{e} is in s^{-1} .

A flow law for quartz is:

$$\dot{e} = 5 \times 10^6 |\sigma_1 - \sigma_3|^3 \exp\left(\frac{-0.19 \text{ MJ/mol}}{RT}\right)$$

for $|\sigma_1 - \sigma_3| \le 1000 \text{ MPa}$

At a given strain rate, quartz is much weaker than olivine!

The quartz-rich continental crust is weaker than the olivine-rich oceanic crust.

Figure 5.7-17: Schematic strength envelope for continents. Strength Brittle Crust Depth lithosphere Quartz/diabase flow law Mohorovecic discontinuity Olivine Mantle flow law

Z

Strength envelopes of olivine in aging and cooling oceanic plate

