
ESS 411/511 Geophysical Continuum Mechanics  Class #20

Highlights from Class #19            – Yiyu Ni

Today’s highlights on Monday    – John-Morgan Manos

Kinematics of Deformation and Motion

For Wednesday, please read MSM Chapter 4.1 through 4.6 

Kinematics of Deformation and Motion
For Friday, please read MSM Chapter 4.7 and 4.8

• Infinitesimal strain

• Strain compatibility

Also check out 4.11 and 4.12

• Velocity gradient and strain rate

• Material derivatives of lines, areas, and volumes 
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Indoor Icequakes

Researchers at Penn State have 
reproduced stick/slip failure 
between ice and bedrock with 
sN = 500 kPa,  like under a 50m 
thick glacier. 
The peer-reviewed paper was in 
GRL about a year ago, and is titled 
Application of Constitutive Friction 
Laws to Glacier Seismicity

Here’s the link:
https://doi.org/10.1029/2020GL0
88964
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https://doi.org/10.1029/2020GL088964


Problem Set #4
• Brad is working on it

Mid-term
• I’m working on it …
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ESS 411/511 Geophysical Continuum Mechanics

Broad Outline for the Quarter
• Continuum mechanics in 1-D
• 1-D models with springs, dashpots, sliding blocks
• Attenuation
• Mathematical tools – vectors, tensors, coordinate changes 
• Stress – principal values,  Mohr’s circles for 3-D stress
• Coulomb failure, pore pressure, crustal strength
• Measuring stress in the Earth
• Strain – Finite strain; infinitesimal strains
• Moments – lithosphere bending; Earthquake moment magnitude
• Conservation laws 
• Constitutive relations for elastic and viscous materials
• Elastic waves; kinematic waves
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Kinematics
• Description without reference to forces
Concept of particle in a continuum
• Just an infinitesimal point in the material, labeled with a vector field X, 

with an associated density
Displacement
• Vector mapping of an object from initial X to final configuration x
Deformation
• Change of shape described by a displacement field
Rigid-body rotation and translation
• No deformation, but displacement can differ from point to point
Strain or distortion
• Elongation or shear 
Homogeneous deformation
• Initially straight material lines stay straight
Finite strain
• Material lines can become curved 

Some terms
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Initial and Final Configurations

6



Trilobites as 
strain gauges



Rates of change in a continuum

When the material is being tracked through time, it is convenient to 
use two sets of coordinates:

Material
The material coordinates XA are the initial positions of a material 
particle X in a coordinate system IA

o Although particle X may move over time, the place XA where 
it started from doesn’t ever change.

o The coordinates XA act as a label identifying particle X, 
wherever it goes.

Spatial
• The spatial coordinates xi(X,t) mark the current position of a 

material particle X in a coordinate system 
o Conversely, X(xi ,t) indicates which particle X is occupying 

location xi at time t.

êi
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Temporal Derivatives

As we saw with the traffic on I-5, there are two types of temporal 
derivatives of some quantity f in a continuum.  
• Rate of change of any property f(xi ,t) at a fixed point xi in space, 

can be written as                     
(1)

The partial derivative symbol    indicates that position xi is held constant.

• Rate of change of f(XA,t) for a particle XA in the moving material,
can be written as                        or

(2)
where “D” or “d” indicate  a “total” or “material-following” derivative.  
The identity XA of a particle isn’t changing through time 
(Calvin and Hobbs transmogrification isn’t allowed), 
So (2) is a function of a single  variable t, and

∂φ(xi, t)
∂t

Dφ(XA, t)
Dt

dφ(XA, t)
dt

dφ(XA, t)
dt

=
∂φ(XA, t)

∂t

∂
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Material Derivatives

1.  The rate of change of f seen 
by an observer at position xi

∂φ(xi, t)
∂t

However, it gets uglier if we want to express the material-following 
derivative in the fixed coordinate system êi

dφ(XA, t)
dt

=
∂φ(XA, t)

∂t

In the material coordinate system IA, rate of change of f for particle XA
as it moves along its trajectory is relatively simple:

The rate of change of f for the particle currently at xi as it moves 
along its trajectory depends on two things:

2.  The rate of change at which the flow v carries gradients of f past 
position xi , even though f may not be changing on the particles

,−
∂φ(xi, t)
∂xk

∂xk
∂t

∂xk
∂t

= vk
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Ways to change f at a point xi

No motion
e.g. material warming in place

Motion uniform and constant
e.g. seabed elevation as a seamount  is 
carried past a point by ocean-plate 
motion

xi

f
t=3

t=1

t=2

v=0

∂φ(XA, t)
∂t

=
∂φ(xi, t)
∂t
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∂φ(xi, t)
∂t

= −
∂φ(xi, t)
∂xk
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Putting it all together
However, it gets uglier if we want to express the material-following 
derivative in the fixed coordinate system êi

dφ(xi, t)
dt

=
∂φ(xi, t)

∂t
+
∂φ(xi, t)
∂xk

∂xk
∂t

In the spatial coordinate system     , rate of change of f for a particle 
XA as it passes through xi :

êi

Rate of change 
of f seen at xi

Correction for changes carried 
in by flow, without f actually 
changing on the particles

For example, for the seamount, the two terms must cancel each other, 
because we know that f, the topography of the seamount, is not changing.
Other situations can be more complicated … J
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Rate of change of 
f seen by the 
moving particle XA



Displacement and Finite Strain
Any two nearby points P and Q in the initial 
configuration are moved to p and q in the 
final configuration.
The displacement of point P is  uP = p – P
The displacement of point Q is  uQ = q –Q
Or in general, u = x – X
Because Q is close to P, u can be expanded 
as a Taylor series around the point P. Here 
are the first-order terms:  

The small line element dXA in the initial configuration also 
gets deformed into a different line element dxi.

uQ = uP +
∂ui
∂XA

dXA

du = uQ −uP( ) = ∂ui
∂XA

dXA

This can be arranged to find du
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Displacement and Finite Strain

The small line element dXA in the initial 
configuration gets deformed into a different line 
element dxi, which can also be expressed by the 
first-order terms of a Taylor series 

dxi =
∂xi
∂XA

dXA

The derivatives form the deformation 
gradient tensor FiA

FiA =
∂xi
∂XA

= xi,A

FiA( )−1 = ∂XA

∂xi
= XA,i

The deformation is reversible, so FiA has an inverse
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Class-prep:  deformation tensor FiA (Break-outs)

Figure 4.2 in text MSM shows that an initial small 
line element dXA between points P and Q in a 
body becomes a small line element dxi between 
points p and q after deformation.   
The deformation gradient tensor FiA characterizes 
the deformation in the vicinity of P and Q by 
relating dxi to dXA, e.g. as expressed in Equation 
4.39

Assignment
Write the general form of the tensor FiA in the equation above as a 3x3 matrix.
Find the 3x3 matrix FiA for the particular deformation field defined by 

x1  = X1
x2 = 2 X3
x3 = -1/2 X2

Find the vector dxi resulting from deformation of the column vector 
dXA = [1,1,1]T

and comment on the results in terms of rotation and stretching. 15



16

x1 = X1
x2 = 2X3

x3 = −
1
2
X1
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⎭
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Mapping

FiA[ ] =

∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2
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Deformation gradient tensor

dXA =
1
1
1
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Reference line 
element dXA

FiAdXA =
1 0 0
0 0 2
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Finding current line element dxi

x2

x3

dX = (1,1,1)

dx = (1, 2, -1/2)

u+du
P

Q

p
q

u

Luckily for us, there is no change 
in the  X1 direction J



A measure for strain   (dx)2 – (dX)2

Green’s deformation tensor

Lagrangian finite strain tensor
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A measure for strain   (dx)2 – (dX)2

Cauchy  deformation tensor

Eulerian finite strain tensor
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In terms of displacements  ui = (xi – Xi)
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