ESS 411/511 Geophysical Continuum Mechanics Class \#20
Highlights from Class \#19 - Yiyu Ni
Today's highlights on Monday - John-Morgan Manos

Kinematics of Deformation and Motion
For Wednesday, please read MSM Chapter 4.1 through 4.6
Kinematics of Deformation and Motion
For Friday, please read MSM Chapter 4.7 and 4.8

- Infinitesimal strain
- Strain compatibility

Also check out 4.11 and 4.12

- Velocity gradient and strain rate
- Material derivatives of lines, areas, and volumes

Indoor Icequakes

Researchers at Penn State have reproduced stick/slip failure between ice and bedrock with $\sigma_{N}=500 \mathrm{kPa}$, like under a 50 m thick glacier. The peer-reviewed paper was in GRL about a year ago, and is titled Application of Constitutive Friction Laws to Glacier Seismicity

Here's the link:
https://doi.org/10.1029/2020GLO 88964

Problem Set \#4

- Brad is working on it

Mid-term

- I'm working on it ...

ESS 411/511 Geophysical Continuum Mechanics

Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Attenuation
- Mathematical tools - vectors, tensors, coordinate changes
- Stress - principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain - Finite strain; infinitesimal strains
- Moments - lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

Some terms

Kinematics

- Description without reference to forces

Concept of particle in a continuum

- Just an infinitesimal point in the material, labeled with a vector field \boldsymbol{X}, with an associated density

Displacement

- Vector mapping of an object from initial \boldsymbol{X} to final configuration \boldsymbol{x}

Deformation

- Change of shape described by a displacement field

Rigid-body rotation and translation

- No deformation, but displacement can differ from point to point

Strain or distortion

- Elongation or shear

Homogeneous deformation

- Initially straight material lines stay straight

Finite strain

- Material lines can become curved

Initial and Final Configurations

Drawing A shows a fossil trilobite, a creature related to crabs and lobsters, that lived on the sea floor many millions of years ago.

Trilobites as strain gauges

B

C

D

Drawings B,C and D are of fossils of the same species of trilobite that were found in rocks that have been squashed and folded.

Rates of change in a continuum

When the material is being tracked through time, it is convenient to use two sets of coordinates:

Material

The material coordinates X_{A} are the initial positions of a material particle X in a coordinate system I_{A}

- Although particle X may move over time, the place X_{A} where it started from doesn't ever change.
- The coordinates X_{A} act as a label identifying particle X, wherever it goes.

Spatial

- The spatial coordinates $x_{\mathrm{i}}(X, t)$ mark the current position of a material particle X in a coordinate system \hat{e}_{i}
o Conversely, $X\left(x_{i}, t\right)$ indicates which particle X is occupying location x_{i} at time t.

Temporal Derivatives

As we saw with the traffic on I-5, there are two types of temporal derivatives of some quantity ϕ in a continuum.

- Rate of change of any property $\phi\left(x_{i}, t\right)$ at a fixed point x_{i} in space, can be written as

$$
\begin{equation*}
\frac{\partial \phi\left(x_{i}, t\right)}{\partial t} \tag{1}
\end{equation*}
$$

The partial derivative symbol ∂ indicates that position x_{i} is held constant.

- Rate of change of $\phi\left(X_{\mathrm{A}}, \mathrm{t}\right)$ for a particle X_{A} in the moving material, can be written as $\frac{D \phi\left(X_{A}, t\right)}{D t}$ or $\frac{d \phi\left(X_{A}, t\right)}{d t}$
where " D " or " d " indicate a "total" or "material-following" derivative. The identity X_{A} of a particle isn't changing through time (Calvin and Hobbs transmogrification isn't allowed),
So (2) is a function of a single variable t, and

$$
\frac{d \phi\left(X_{A}, t\right)}{d t}=\frac{\partial \phi\left(X_{A}, t\right)}{\partial t}
$$

Material Derivatives

In the material coordinate system I_{A}, rate of change of ϕ for particle X_{A} as it moves along its trajectory is relatively simple:

$$
\frac{d \phi\left(X_{A}, t\right)}{d t}=\frac{\partial \phi\left(X_{A}, t\right)}{\partial t}
$$

However, it gets uglier if we want to express the material-following derivative in the fixed coordinate system \hat{e}_{i}
The rate of change of ϕ for the particle currently at x_{i} as it moves along its trajectory depends on two things:

1. The rate of change of ϕ seen by an observer at position x_{i}

$$
\frac{\partial \phi\left(x_{i}, t\right)}{\partial t}
$$

2. The rate of change at which the flow v carries gradients of ϕ past position x_{i}, even though ϕ may not be changing on the particles

$$
-\frac{\partial \phi\left(x_{i}, t\right)}{\partial x_{k}} \frac{\partial x_{k}}{\partial t}, \quad \frac{\partial x_{k}}{\partial t}=v_{k}
$$

Ways to change ϕ at a point x_{i}

No motion
e.g. material warming in place

$\frac{\partial \phi\left(X_{A}, t\right)}{\partial t}=\frac{\partial \phi\left(x_{i}, t\right)}{\partial t}$

Motion uniform and constant e.g. seabed elevation as a seamount is carried past a point by ocean-plate motion

$$
\frac{\partial \phi\left(x_{i}, t\right)}{\partial t}=-\frac{\partial \phi\left(x_{i}, t\right)}{\partial x_{k}} \frac{\partial x_{k}}{\partial t}, \quad \frac{\partial x_{k}}{\partial t}=v_{k}
$$

Putting it all together

However, it gets uglier if we want to express the material-following derivative in the fixed coordinate system \hat{e}_{i}

In the spatial coordinate system \hat{e}_{i}, rate of change of ϕ for a particle X_{A} as it passes through x_{i} :

Rate of change of ϕ seen by the of ϕ seen at x_{i} moving particle X_{A}

Correction for changes carried in by flow, without ϕ actually changing on the particles

For example, for the seamount, the two terms must cancel each other, because we know that ϕ, the topography of the seamount, is not changing. Other situations can be more complicated

Displacement and Finite Strain

Any two nearby points \mathbf{P} and \mathbf{Q} in the initial configuration are moved to \mathbf{p} and \mathbf{q} in the final configuration.
The displacement of point \mathbf{P} is $\boldsymbol{u}_{\mathbf{P}}=\mathbf{p}-\mathbf{P}$ The displacement of point \mathbf{Q} is $\boldsymbol{u}_{\mathbf{Q}}=\mathbf{q}-\mathbf{Q}$ Or in general, $\boldsymbol{u}=\boldsymbol{x}-\mathbf{X}$
Because \mathbf{Q} is close to $\mathbf{P}, \boldsymbol{u}$ can be expanded as a Taylor series around the point \mathbf{P}. Here are the first-order terms:

$$
u_{Q}=u_{P}+\frac{\partial u_{i}}{\partial X_{A}} d X_{A}
$$

This can be arranged to find du

$$
d u=\left(u_{Q}-u_{P}\right)=\frac{\partial u_{i}}{\partial X_{A}} d X_{A}
$$

The small line element $d X_{A}$ in the initial configuration also gets deformed into a different line element $\mathrm{d} x_{i}$.

Displacement and Finite Strain

The small line element $d X_{A}$ in the initial configuration gets deformed into a different line element $\mathrm{d} x_{i}$, which can also be expressed by the first-order terms of a Taylor series

$$
d x_{i}=\frac{\partial x_{i}}{\partial X_{A}} d X_{A}
$$

The derivatives form the deformation gradient tensor $F_{i A}$

$$
F_{i A}=\frac{\partial x_{i}}{\partial X_{A}}=x_{i, A}
$$

The deformation is reversible, so $F_{i A}$ has an inverse

$$
\left(F_{i A}\right)^{-1}=\frac{\partial X_{A}}{\partial x_{i}}=X_{A, i}
$$

Class-prep: deformation tensor $\mathrm{F}_{i A}$ (Break-outs)

Figure 4.2 in text MSM shows that an initial small line element $\mathrm{d} X_{\mathrm{A}}$ between points \mathbf{P} and \mathbf{Q} in a body becomes a small line element $\mathrm{d} x_{i}$ between points \mathbf{p} and \mathbf{q} after deformation.
The deformation gradient tensor $F_{i A}$ characterizes the deformation in the vicinity of P and Q by relating $\mathrm{d} x_{i}$ to $\mathrm{d} X_{A}$, e.g. as expressed in Equation 4.39

$$
d x_{i}=\frac{\partial x_{i}}{\partial X_{A}} d X_{A}=x_{i, A} X_{A}=F_{i A} d X_{A}
$$

Assignment

Write the general form of the tensor $F_{i A}$ in the equation above as a 3×3 matrix.
Find the 3×3 matrix $\mathrm{F}_{i A}$ for the particular deformation field defined by

$$
\begin{aligned}
& x_{1}=x_{1} \\
& x_{2}=2 x_{3} \\
& x_{3}=-1 / 2 x_{2}
\end{aligned}
$$

Find the vector $\mathrm{d} x_{i}$ resulting from deformation of the column vector

$$
\mathrm{d} X_{\mathrm{A}}=[1,1,1]^{\top}
$$

and comment on the results in terms of rotation and stretching.

Reference line element dX_{A}

$$
d X_{A}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad\left\{\begin{array}{c}
x_{1}=X_{1} \\
x_{2}=2 X_{3} \\
x_{3}=-\frac{1}{2} X_{1}
\end{array}\right\}
$$

$$
\left[F_{i A}\right]=\left[\begin{array}{lll}
\frac{\partial x_{1}}{\partial X_{1}} & \frac{\partial x_{1}}{\partial X_{2}} & \frac{\partial x_{1}}{\partial X_{3}} \\
\frac{\partial x_{2}}{\partial X_{1}} & \frac{\partial x_{2}}{\partial X_{2}} & \frac{\partial x_{2}}{\partial X_{3}} \\
\frac{\partial x_{3}}{\partial X_{1}} & \frac{\partial x_{3}}{\partial X_{2}} & \frac{\partial x_{3}}{\partial X_{3}}
\end{array}\right]=\left[\begin{array}{ccc}
& & \\
1 & 0 & 0 \\
0 & 0 & 2 \\
0 & -\frac{1}{2} & 0
\end{array}\right]
$$

Finding current line element $\mathrm{d} x_{i}$

$$
F_{i A} d X_{A}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 2 \\
0 & -\frac{1}{2} & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-\frac{1}{2}
\end{array}\right]
$$

Luckily for us, there is no change in the X_{1} direction ©

A measure for strain $(\mathrm{d} x)^{2}-(\mathrm{dX})^{2}$

$$
\begin{aligned}
(\mathrm{d} x)^{2}-(\mathrm{dX})^{2} & =\left(x_{i, A} d X_{A}\right)\left(x_{i, B} d X_{B}\right)-\delta_{A B} d X_{A} d X_{B} \\
& =\left(x_{i, A} x_{i, B}-\delta_{A B}\right) \mathrm{d} X_{A} d X_{B} \\
& =\left(C_{A B}-\delta_{A B}\right) \mathrm{d} X_{A} d X_{B}
\end{aligned}
$$

Green's deformation tensor

$$
C_{A B}=x_{i, A} x_{i, B} \quad \text { or } \quad \mathbf{C}=\mathbf{F}^{\top} \cdot \mathbf{F}
$$

Lagrangian finite strain tensor

$$
2 E_{A B}=C_{A B}-\delta_{A B} \quad \text { or } \quad 2 E=C-I
$$

A measure for strain $(\mathrm{d} x)^{2}-(\mathrm{dX})^{2}$

$$
\begin{aligned}
(\mathrm{d} x)^{2}-(\mathrm{d} X)^{2} & =\delta_{i j} \mathrm{~d} x_{i} \mathrm{~d} x_{j}-\left(X_{A, i} \mathrm{~d} x_{i}\right)\left(X_{A, j} \mathrm{~d} x_{j}\right) \\
& =\left(\delta_{i j}-X_{A, i} x_{A, j}\right) \mathrm{d} x_{i} d x_{j} \\
& =\left(\delta_{i j}-c_{i j}\right) d x_{i} d x_{j}
\end{aligned}
$$

Cauchy deformation tensor

$$
c_{i j}=X_{A, i} X_{A, j} \quad \text { or } \quad \mathbf{c}=\left(\mathbf{F}^{-1}\right)^{\top} \cdot\left(\mathbf{F}^{-1}\right)
$$

Eulerian finite strain tensor

$$
2 e_{i j}=\left(\delta_{i j}-c_{i j}\right) \quad \text { or } \quad 2 \boldsymbol{e}=(\mathbf{I}-\mathbf{c})
$$

In terms of displacements $u_{i}=\left(x_{i}-X_{i}\right)$

$$
\begin{aligned}
& 2 E_{A B}=x_{i, A} x_{i, B}-\delta_{A B}=\left(u_{i, A}+\delta_{i A}\right)\left(u_{i, B}+\delta_{i B}\right)-\delta_{A B} \\
& 2 E_{A B}=u_{A, B}+u_{B, A}+u_{i, A} u_{i, B} \\
& 2 e_{i j}=\delta_{i j}-X_{A, i} X_{A, j}=\delta_{i j}-\left(\delta_{A i}-u_{A, i}\right)\left(\delta_{A j}-u_{A, j}\right) \\
& 2 e_{i j}=u_{i, j}+u_{j, i}-u_{A, i} u_{A, j}
\end{aligned}
$$

