ESS 411/511 Geophysical Continuum Mechanics Class \#21
Highlights from Class \#20 - John-Morgan Manos
Today's highlights on Friday - Alysa Fintel

Kinematics of Deformation and Motion
For Friday, please read MSM Chapter 4.11 and 4.12

- Velocity gradient and strain rate
- Material derivatives of lines areas, and volumes

Problem Set \#4

- Brad is working on it ©

Mid-term

- I'm working on it ...

ESS 411/511 Geophysical Continuum Mechanics

Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Attenuation
- Mathematical tools - vectors, tensors, coordinate changes
- Stress - principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain - Finite strain; infinitesimal strains
- Moments - lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

Class-prep for Class 22 on Friday: Strain Compatibility

For small strains, the strain is defined (Equation 4.62) as

$$
2 \epsilon_{i j}=\frac{\partial u_{i}}{\partial X_{A}} \delta_{A j}+\frac{\partial u_{j}}{\partial X_{B}} \delta_{B i}=\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}=u_{i, j}+u_{j, i}
$$

where $u_{\mathrm{i}}=x_{i}-\mathrm{X}_{A} \delta_{\mathrm{i} A}$ is displacement, the difference between current and initial positions. (The Kroenecker delta $\delta_{i A}$ just makes it clear how to relate the " A " subscripts in the initial coordinate system to the " i " subscripts in the current coordinate system.)

Section 4.8 describes strain compatibility, and the 81 strain-compatibility equations that relate the various second derivatives.

$$
\epsilon_{i j, k m}+\epsilon_{k m, i j}-\epsilon_{i k, j m}-\epsilon_{j m, i k}=0
$$

Assignment

81 equations- that's a lot of equations!

- Why are only 6 of them needed in practice?
- Compatibility with what? What would strain incompatibility look like?

On page 129 - "It may be shown that the compatibility equations, either Eq 4.90 or Eq 4.91, are both necessary and sufficient for a single-valued displacement field of a body occupying a simply connected domain."

- How would you paraphrase this sentence into simple concepts?

A Lagrangian measure for strain $(\mathrm{d} x)^{2}-(\mathrm{dX})^{2}$

$$
\begin{aligned}
(\mathrm{dx})^{2}-(\mathrm{dX})^{2} & =\left(x_{i, A} d X_{A}\right)\left(x_{i, B} d X_{B}\right)-\delta_{A B} d X_{A} d X_{B} \\
& =\left(x_{i, A} x_{i, B}-\delta_{A B}\right) d X_{A} d X_{B} \\
& =\left(C_{A B}-\delta_{A B}\right) \mathrm{d} X_{A} d X_{B}
\end{aligned}
$$

Green's deformation tensor
$C_{A B}=x_{i, A} x_{i, B} \quad$ or
$\mathbf{C}=\mathbf{F}^{\top} \cdot \mathbf{F}$

Lagrangian finite strain tensor

$$
2 E_{A B}=C_{A B}-\delta_{A B} \quad \text { or } \quad 2 E=C-I
$$

- Is C_{AB} symmetric?
- Is E_{AB} symmetric?

An Eulerian measure for strain $(\mathrm{d} x)^{2}-(\mathrm{dX})^{2}$

$$
\begin{aligned}
(\mathrm{d} x)^{2}-(\mathrm{d} X)^{2} & =\delta_{i j} \mathrm{~d} x_{i} \mathrm{~d} x_{j}-\left(X_{A, i} \mathrm{~d} x_{i}\right)\left(X_{A, j} \mathrm{~d} x_{j}\right) \\
& =\left(\delta_{i j}-X_{A, i} x_{A, j}\right) d x_{i} d x_{j} \\
& =\left(\delta_{i j}-c_{i j}\right) d x_{i} d x_{j}
\end{aligned}
$$

Cauchy deformation tensor

$$
c_{i j}=X_{A, i} X_{A, j} \quad \text { or } \quad \mathbf{c}=\left(\mathbf{F}^{-1}\right)^{\top} \cdot\left(\mathbf{F}^{-1}\right)
$$

Eulerian finite strain tensor

$$
2 e_{i j}=\left(\delta_{i j}-c_{i j}\right) \quad \text { or } \quad 2 \boldsymbol{e}=(\mathbf{I}-\mathbf{c})
$$

- Is c_{ij} symmetric?
- Is e_{ij} symmetric?

In terms of displacements $u_{i}=\left(x_{i}-X_{i}\right)$

$$
\begin{aligned}
& 2 E_{A B}=x_{i, A} x_{i, B}-\delta_{A B}=\left(u_{i, A}+\delta_{i A}\right)\left(u_{i, B}+\delta_{i B}\right)-\delta_{A B} \\
& 2 E_{A B}=u_{A, B}+u_{B, A}+u_{i, A} u_{i, B} \\
& 2 e_{i j}=\delta_{i j}-X_{A, i} x_{A, j}=\delta_{i j}-\left(\delta_{A i}-u_{A, i}\right)\left(\delta_{A j}-u_{A, j}\right) \\
& 2 e_{i j}=u_{i, j}+u_{j, i}-u_{A, i} u_{A, j}
\end{aligned}
$$

Finite Strain in 1-D

$\begin{aligned} & \text { We typically first see strain expressed as } \\ & \text { and when there is shortening, } \Delta L<0\end{aligned} \quad \varepsilon=\frac{\Delta L}{L_{0}}$
But this approach is not accurate for large strains e.g. when $-\Delta L$ is large fraction of L_{0}. For example,
 break a big change into 2 smaller changes:

$\varepsilon=\frac{\Delta L}{L_{0}}=\frac{-L_{0} / 2}{L_{0}}=-1 / 2$

$$
\varepsilon=\frac{\Delta L}{L_{0}}=\frac{-L_{0} / 4}{L_{0}}=-1 / 4
$$

But in both steps the height was halved, so the incremental strain should be the same ...

Finite Strain in 1-D

when $-\Delta L$ is large fraction of L_{0}, and L is the final length, we can address large strains by adding up a whole series of small strains.

- We have to reset L_{0} at each step and call it l

$$
\begin{aligned}
& \varepsilon=\int_{L_{0}}^{L} \frac{d l}{l}=\ln (L)-\ln \left(L_{o}\right)=\ln \left(L / L_{o}\right) \\
& \varepsilon=\ln \left(L / L_{o}\right)=\ln \left(\frac{L_{0}+\Delta L}{L_{0}}\right)=\ln \left(1+\frac{\Delta L}{L_{0}}\right)
\end{aligned}
$$

Now recall the Taylor series for $\ln (1+x) \quad$ when $-1<x<1$

$$
\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\ldots
$$

With $x=\left(\Delta L / L_{O}\right)$,

$$
\begin{aligned}
& \varepsilon=\ln \left(1+\frac{\Delta L}{L_{0}}\right) \\
& =\frac{\Delta L}{L_{0}}-\frac{1}{2}\left(\frac{\Delta L}{L_{0}}\right)^{2}+\text { some small stuff }
\end{aligned}
$$

- The first term looks familiar ...
- The second term corrects for the changing l as strain proceeds

A bar is shortened uniformly in the x_{1} direction

$$
\begin{aligned}
& x_{1}=k X_{1}, \text { e.g. } k=1 / 2 \\
& k=\left(x_{1} / X_{1}\right)=\left(\frac{L_{0}+\Delta L}{L_{0}}\right) \\
&=\left(1+\frac{\Delta L}{L_{0}}\right)
\end{aligned}
$$

Eulerian Finite Strain Tensor

$$
2 e_{i j}=u_{i, j}+u_{j, i}-u_{A, i} u_{A, j} \quad\left({ }^{* *}\right)
$$

Displacement

$$
u_{1}=x_{1}-X_{1}=x_{1}-\left(x_{1} / k\right)
$$

field

$$
(\mathrm{i}=\mathrm{j}=\mathrm{A}=1) \quad=(1-1 / k) x_{1}
$$

Strain $\quad 2 e_{11}=2 \frac{\partial u_{1}}{\partial x_{1}}-\left(\frac{\partial u_{1}}{\partial x_{1}}\right)^{2} \quad$ from $\left(^{* *}\right)$
field

$$
=2(1-1 / k)-(1-1 / k)^{2}
$$

$$
\text { and } \quad(1-1 / k)=\left(1-\frac{L_{0}}{L_{0}+\Delta L}\right)=\frac{\Delta L}{L_{0}+\Delta L}
$$

$$
\text { so } \quad 2 e_{11}=2\left(\frac{\Delta L}{\Delta L+L_{0}}\right)-\left(\frac{\Delta L}{\Delta L+L_{0}}\right)^{2}
$$

Let's compare ...

Traditional 1-D
logarithmic finite strain

$$
\begin{aligned}
& \varepsilon=\ln \left(1+\frac{\Delta L}{L_{0}}\right) \\
& =\frac{\Delta L}{L_{0}}-\frac{1}{2}\left(\frac{\Delta L}{L_{0}}\right)^{2}+\text { some small stuff }
\end{aligned}
$$

Eulerian finite strain tensor in 1-D

$$
e_{11}=\left(\frac{\Delta L}{\Delta L+L_{0}}\right)-\frac{1}{2}\left(\frac{\Delta L}{\Delta L+L_{0}}\right)^{2}
$$

- They are clearly very similar for small ΔL
- Both show a quadratic correction for larger strains

Example of a strain - is it small?

When an s-wave from a major Kamchatka quake arrives at Seattle, the ground is strained by the passing wave. To estimate the strain, we need to estimate

- Displacement amplitude
- Wavelength (think about frequency of vibration and typical wave propagation speed)
- What is your estimate for the strain?
- Would you need finite strain theory to analyze this?

Class-prep: Moving Magma (Break-outs)

Class-prep: Moving Magma (Break-outs)
For small displacements and strains, the strain tensor
can be written as (Eq. 4.72)
[$\left.\epsilon_{i j}\right]=\left[\begin{array}{ccc}\epsilon_{11} & \frac{1}{2} \gamma_{12} & \frac{1}{2} \gamma_{13} \\ \frac{1}{2} \gamma_{12} & \epsilon_{22} & \frac{1}{2} \gamma_{23} \\ \frac{1}{2} \gamma_{13} & \frac{1}{2} \gamma_{23} & \epsilon_{33}\end{array}\right]$

Magma is on the move at Mt Baker ski area

- You are a surveyor with a "total station" (theodolite and EDM) to measure angles and distances.
- Stress τ_{ij} is related to strain $\varepsilon_{\mathrm{ij}}$ by $\tau_{\mathrm{ij}}=k \varepsilon_{\mathrm{ij}} \quad$ (k is an elastic-strength parameter)
- you have 3 benchmarks (survey stations) arranged as a right-angled triangle.

Assignment

(1) Understanding the strain tensor

- Physical meaning of the diagonal entries?
- Physical meaning of the off-diagonal entries?
(2) The strain tensor and the stress tensor

You have 1 month to determine the strain rate and stress in the ground from multiple surveys using your 3 survey benchmarks and the mountain peak.

- What measurements will you plan to make over the one-month period, to derive the strain tensor from your data?
- How will you calculate the stress tensor?
- How will you determine the orientation of a potential fissure?

Initial and Final Configurations

Small strain entries

$$
\begin{aligned}
& (d x)^{2}-(d X)^{2}=2 \epsilon_{i j} d X_{i} d X_{j} \\
& \frac{d x-d X}{d X} \cdot \frac{d x+d X}{d X}=2 \epsilon_{i j} \frac{d X_{i}}{d X} \frac{d X_{j}}{d X} \\
& d X_{i} / d X=N_{i}
\end{aligned}
$$

a unit vector in the direction of $d \mathbf{X}$

$$
(\mathrm{d} x+\mathrm{dX}) / \mathrm{dX} \approx 2
$$

$$
\frac{d x-d X}{d X}=\epsilon_{i j} N_{i} N_{j}
$$

change in length per unit original length for the element in the direction of \mathbf{N}, called longitudinal strain. If $N=\hat{I}_{1}$, then $\hat{\mathbf{I}}_{1} \cdot \boldsymbol{\epsilon} \cdot \hat{\mathbf{I}}_{1}=\boldsymbol{\epsilon}_{11}$

$$
\begin{aligned}
& \cos \theta=\cos \left(\frac{\pi}{2}-\gamma\right)=\sin \gamma \approx \gamma \\
& \mathrm{d} \boldsymbol{x}^{(1)} \approx \mathrm{d} \mathbf{X}^{(1)^{\prime}} \text { and } \mathrm{d} \boldsymbol{x}^{(2)} \approx \mathrm{d} \mathbf{X}^{(2)}
\end{aligned}
$$

$$
\gamma \approx \cos \theta=\frac{\mathrm{d} \mathbf{X}^{(1)}}{\mathrm{d} x^{(1)}} \cdot 2 \boldsymbol{\epsilon} \cdot \frac{\mathrm{~d} \mathbf{X}^{(2)}}{\mathrm{dx} \mathrm{x}^{(2)}} \approx \hat{\mathbf{N}}_{(1)} \cdot 2 \mathbf{\epsilon} \cdot \hat{\mathbf{N}}_{(2)}
$$

If we set $\quad \hat{\mathbf{N}}_{(1)}=\hat{\mathbf{I}}_{1}$ and $\hat{\mathbf{N}}_{(2)}=\hat{\mathbf{I}}_{2}$

$$
\gamma_{12}=2[1,0,0]\left[\begin{array}{lll}
\epsilon_{11} & \epsilon_{12} & \epsilon_{13} \\
\epsilon_{12} & \epsilon_{22} & \epsilon_{23} \\
\epsilon_{13} & \epsilon_{23} & \epsilon_{33}
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=2 \epsilon_{12}
$$

Deviatoric stress

Mean stress ... $\quad \sigma_{M}=\frac{1}{3}\left(t_{11}+t_{22}+t_{33}\right)=\frac{1}{3} t_{i i}$
(How is this related to pressure?)
Spherical stress ... $\quad\left[\mathrm{t}_{\mathrm{ij}}\right]=\left[\begin{array}{ccc}\sigma_{M} & 0 & 0 \\ 0 & \sigma_{M} & 0 \\ 0 & 0 & \sigma_{M}\end{array}\right]$
(Where might you find a state of stress like this?)
Decomposition ... $\quad \mathrm{t}_{\mathrm{ij}}=\mathrm{S}_{\mathrm{ij}}+\delta_{i j} \sigma_{M}=\mathrm{S}_{\mathrm{ij}}+\frac{1}{3} \delta_{i j} \mathrm{t}_{\mathrm{kk}}$
Deviatoric stress ... $\left[\begin{array}{lll}\mathrm{s}_{11} & \mathrm{~S}_{12} & \mathrm{~S}_{13} \\ \mathrm{~s}_{12} & \mathrm{~S}_{22} & \mathrm{~S}_{23} \\ \mathrm{~s}_{13} & \mathrm{~S}_{23} & \mathrm{~s}_{33}\end{array}\right]=\left[\begin{array}{ccc}\mathrm{t}_{11}-\sigma_{M} & \mathrm{t}_{12} & \mathrm{t}_{13} \\ \mathrm{t}_{12} & \mathrm{t}_{22}-\sigma_{M} & \mathrm{t}_{23} \\ \mathrm{t}_{13} & \mathrm{t}_{23} & \mathrm{t}_{33}-\sigma_{\mathrm{M}}\end{array}\right]$
What sort of materials would best be described by deviatoric stress?

Deviatoric strain

Just as with deviatoric stress and mean stress ... we can define a mean normal strain $\varepsilon_{M}=\frac{1}{3} \varepsilon_{i i}$
and an infinitesimal deviatoric strain tensor η_{ij}

$$
\eta_{i j}=\epsilon_{i j}-\frac{1}{3} \delta_{i j} \epsilon_{k k}=\epsilon_{i j}-\delta_{i j} \epsilon_{M}
$$

and in matrix form

$$
\left[\begin{array}{lll}
\eta_{11} & \eta_{12} & \eta_{13} \\
\eta_{21} & \eta_{22} & \eta_{23} \\
\eta_{31} & \eta_{32} & \eta_{33}
\end{array}\right]=\left[\begin{array}{ccc}
\epsilon_{11}-\epsilon_{M} & \epsilon_{12} & \epsilon_{13} \\
\epsilon_{12} & \epsilon_{22}-\epsilon_{M} & \epsilon_{23} \\
\epsilon_{13} & \epsilon_{23} & \epsilon_{33}-\epsilon_{33}
\end{array}\right]
$$

Where would deviatoric stress be a useful concept?

