ESS 411/511 Geophysical Continuum Mechanics Class \#23

Highlights from Class \#22 - McKenzie Carlson
Today's highlights on next Monday - Peter Lindquist

Problem Set \#6

- is posted.
- Since Thursday is a holiday, we will use the class period on Wednesday as a group collaborative session to work on HW \#6.
Midterm
- Has been (mostly) marked, and I expect to return annotated versions to you later today or tomorrow.

ESS 411/511 Geophysical Continuum Mechanics Class \#23

For Problems Lab on Wednesday

- Be sure to be familiar with MSM Chapter 4
- For classes next week
- Read (https://courses.washington.edu/ess511/NOTES/)
- Ed's note on volume elements
- Ed's note on conservation laws
- Ed's note on constitutive relations

ESS 411/511 Geophysical Continuum Mechanics

Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Attenuation
- Mathematical tools - vectors, tensors, coordinate changes
- Stress - principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain - Finite strain; infinitesimal strains
- Moments - lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

Class-prep: Please give me a moment ...

Please Read Raymond notes on Stress and Moments on class web site https://courses.washington.edu/ess511/NOTES/CFR CHAPTERS/CFR stress notes.pdf

"Moment" and torque" are often used interchangeably, although technically a moment is a static concept, and torque applies to a rotation motion. Both involve a vector cross product between a force and a lever arm (or moment arm), so the units are Newton meters (N m). The first figure illustrates the moment exerted around the point P by a point mass m on the end of a stiff low-weight wire and subjected to gravity.

Now let's put a second mass on the wire, and see how the moments work.

Assignment

- What is the moment exerted by mass m_{1} at point $x_{1}=0$?
- What is the moment exerted by mass m_{2} at point $x_{1}=0$?
- What is the total moment exerted by both masses m_{1} and m_{2} at point $x_{1}=0$?
- What is the moment exerted by mass m_{2} at point $x_{1}=$ r_{1} ?
- Suppose that we keep adding more discrete masses on the wire until we effectively have a solid steel bar. In a couple of sentences, explain how you could still find the net moment exerted at any particular point, such as $x_{1}=0$. (Consider that integral calculus could help.)

A hanging plate

Where is bending the greatest?

You can try this at home with a sheet of paper hanging over the edge of a table ...
(it isn't dangerous ()).

Where do you think bending moment is the greatest?

But first, to simplify the math, we will assume for now that the deflections are very small.

Average stress across the beam (per unit width in x_{3})

Vertical plane at x_{1} must support the weight of all material to the right.
e.g. $<\sigma_{12}>$ t is vertically directed force per unit width in x_{3}

$<\sigma_{11}>t=\rho g_{1}\left(L-x_{1}\right) t=0$
$<\sigma_{12}>t=\rho g_{2}\left(L-x_{1}\right) t$
$\left.<\sigma_{13}\right\rangle t=\rho 8_{3}\left(L-x_{1}\right) t=0$
Although $\left\langle\sigma_{11}>=0\right.$, there must be

- tension ($\sigma_{11}>0$) in the upper part and
- compression ($\sigma_{11}<0$) in the lower part, in order to prevent the material to the right from falling down.

Incremental moment at x_{1} due to outboard weight

Incremental moment at x_{1} exerted by thin slice $\mathrm{d} x_{1}{ }^{\prime}$ of slab at $x_{1}{ }^{\prime}$ e.g. $<\sigma_{12}>t$ is vertically directed force per unit width in x_{3}

$$
d M_{g}=-\rho g t d x_{1}^{\prime}\left(x_{1}^{\prime}-x_{1}\right)
$$

Now add up the incremental moments at x_{1} due to all thin slices $\mathrm{d} x_{1}{ }^{\prime}$ to the right of x_{1}

$$
M_{g}=\int_{x_{1}}^{L} \rho g t\left(x_{1}-x_{1}^{\prime}\right) d x_{1}^{\prime}=-\frac{1}{2} \rho g t\left(L-x_{1}\right)^{2}
$$

The force per unit width: $\rho \mathrm{gtd} x_{1}{ }^{\prime}$
The lever arm: $\left(x_{1}-x_{1}{ }^{\prime}\right)$

Incremental moment at x_{1} due to stress in the beam

$$
M_{t}=+\int_{-/ / 2}^{1 / 2} \sigma_{11}\left(x_{1}, x_{2}\right) x_{2}^{\prime} a x_{2}
$$

The force per unit width: $\sigma_{11}\left(x_{1}, x_{2}{ }^{\prime}\right) \mathrm{d} x_{2}{ }^{\prime}$ The lever arm: $x_{2}{ }^{\prime}$

Shear stresses σ_{12} and σ_{13} at x_{1} don't contribute because they have no moment arm around $x_{1} \quad\left(x_{1}-x_{1}\right)=0$
σ_{11} is assumed to be linear, but it is a very good assumption.

Incremental moment at x_{1} due to stress in the beam

σ_{11} is assumed to be linear, but it is a very good assumption.

Putting it together -

To avoid angular accelerations

$$
M_{t}+M_{g}=0
$$

$$
\int_{-1 / 2}^{t / 2} \sigma_{11}\left(x_{1} x_{2}^{\prime}\right) x_{2}^{\prime} d x_{2}^{\prime}=\frac{1}{2} \rho g t\left(L-x_{1}\right)^{2}
$$

Now include traction on the top and bottom

$$
F_{2}\left(x_{1}^{\prime}\right)=-\rho g t+N_{\text {top }}-N_{\text {bottom }}
$$

$$
F_{1}\left(x_{1}^{\prime}\right)=S_{\text {top }}-S_{\text {bottom }}
$$

Now include tractions on the top and bottom

$$
F_{2}\left(x_{1}^{\prime}\right)=-\rho g t+N_{\text {top }}-N_{\text {boutom }}
$$

$$
F_{1}\left(x_{1}^{\prime}\right)=S_{\text {top }}-S_{\text {botuom }}
$$

Putting it together

$$
=\sigma_{11}>t+\int_{x_{1}} F_{1}\left(x_{1}^{\prime}\right) d x_{1}^{\prime}+P_{1}=0
$$

$$
\begin{aligned}
& \left.<\sigma_{11}\right\rangle=\frac{1}{\prime}\left\{P_{1}+\int^{L} F_{1}\left(x_{1}^{\prime}\right) d x_{1}^{\prime}\right\} \\
& <\sigma_{12}>t+\int_{x_{1}}^{L} F_{2}\left(x_{1}^{\prime}\right) d x_{1}^{\prime}+P_{2}=0
\end{aligned}
$$

$$
<\sigma_{12}>=\frac{1}{t}\left\{P_{2}+\int_{x_{1}}^{L} F_{2}\left(x_{1}^{\prime}\right) d x_{1}^{\prime}\right\}
$$

Let's find the shape $u_{2}\left(x_{1}\right)$ of the beam

Outboard
moment

$$
M_{L}=\int_{x_{1}}^{L} F_{2}\left(x_{1}^{\prime}\right)\left(x_{1}^{\prime}-x_{1}\right) d x_{1}^{\prime}+P_{2}\left(L-x_{1}\right)-P_{1}\left(u_{2}(L)-u_{2}\left(x_{1}\right)\right)
$$

Internal-stress moment

$$
M_{t}=+\int_{-/ 2}^{/ / 2} \sigma_{11}\left(x_{1}, x_{2}^{\prime}\right) x_{2}^{\prime} d x_{2}^{\prime}
$$

Their sum

$$
M_{t}+M_{L}=0
$$

$$
\text { gives } \quad M_{t}\left(x_{1}\right)=-\int_{x_{1}}^{L} F_{2}\left(x_{1}^{\prime}\right)\left(x_{1}^{\prime}-x_{1}\right) d x_{1}^{\prime}-P_{2}\left(L-x_{1}\right)+P_{1}\left(u_{2}(L)-u_{2}\left(x_{1}\right)\right)
$$

Let's find the shape $u_{2}\left(x_{1}\right)$ of the beam

$$
M_{t}\left(x_{1}\right)=-\int_{x_{1}}^{L} F_{2}\left(x_{1}^{\prime}\right)\left(x_{1}^{\prime}-x_{1}\right) d x_{1}^{\prime}-P_{2}\left(L-x_{1}\right)+P_{1}\left(u_{2}(L)-u_{2}\left(x_{1}\right)\right)
$$

But this is an integral equation for $u_{2}\left(x_{1}\right)$, and integral equations are hard ...

- Let's try to differentiate a couple of times.

Once -

$$
\frac{d M_{t}\left(x_{1}\right)}{d x_{1}}=+\int_{x_{1}}^{L} F_{2}\left(x_{1}^{\prime}\right) d x_{1}^{\prime}+F_{2}\left(x_{1}\right)\left(x_{1}-x_{1}\right)+P_{2}-P_{1} \frac{\partial u_{2}}{\partial x_{1}}=t<\sigma_{12}>
$$

Twice -

$$
\frac{d^{2} M_{1}\left(x_{1}\right)}{d x_{1}^{2}}=-F_{2}\left(x_{1}\right)-P_{1} \frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}
$$

Introduce flexural rigidity -

$$
M_{t}=-D \frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}
$$

$$
\begin{aligned}
& \text { Elastic beam equation } \\
& \frac{\partial^{4} u_{2}}{\partial x_{1}^{4}}=\frac{1}{D}\left[F_{2}\left(x_{1}\right)+P_{1} \frac{\partial^{2} u_{2}}{\partial x_{1}^{2}}\right)
\end{aligned}
$$

Moments of interest in the Earth

- Rock overhangs
- Snow cornices
- Tidal flexure of ice shelves floating in the ocean
- Length scale of support by bending lithosphere
- Earthquake moment magnitude

Now lithosphere is warped into a sinusoid

- e.g. by loading with a big ice sheet

$$
u_{2}\left(x_{1}\right)=a \sin k x_{1} \quad \lambda=2 \pi / k
$$

- Far from any edge, $\mathrm{P}_{1}=\mathrm{P}_{2}=0$
- $\mathrm{N}_{\text {top }}=0$
- $N_{\text {bot }}=\sigma_{b}$

$$
\frac{\partial^{4} u_{2}}{\partial x_{1}^{4}}=k^{4} a \sin k x_{1}=\frac{1}{D} F_{2}\left(x_{1}\right)
$$

σ_{b} results from 2 effects

- weight of the overlying lithosphere
- bending stresses in the elastic lithosphere, which tries to relax
- pull the lithosphere up and away from the mantle in the hollows,
- push down on the mantle under the crests.

$u_{2} \uparrow \quad$ Suppose lithosphere is flat in relaxed state

Now lithosphere is warped into a sinusoid

- e.g. by loading with a big ice sheet

- Far from any edge, $\mathrm{P}_{1}=\mathrm{P}_{2}=0 \quad$ Assume $\mathrm{S}_{\text {top }}=\mathrm{S}_{\text {bot }}=0$ so $F_{1}\left(x_{1}\right)=0$ (3)
- $\mathrm{N}_{\text {top }}=0$
- $\mathrm{N}_{\text {bot }}=-\sigma_{b}$

$$
\begin{equation*}
F_{2}=\sigma_{b}-\rho_{c} g t \tag{2}
\end{equation*}
$$

so

$$
\begin{equation*}
\frac{\partial^{4} u_{2}}{\partial x_{1}^{4}}=k^{4} a \sin k x_{1}=\frac{1}{D} F_{2}\left(x_{1}\right) \tag{4}
\end{equation*}
$$

σ_{b} varies with x_{1} and results from 2 effects

- weight of the overlying lithosphere
- bending stresses in the lithosphere, which tries to relax and flatten
- pull the lithosphere up from the mantle in the hollows,
- push down on the mantle under the crests.

From (2), (3), and (4) $\quad \sigma_{b}=\rho_{c} g t+D k^{4} a \sin k x_{1}$

At the reference level, first account for

- weight of the mantle "bumps": $\quad \rho_{\mathrm{m}} \mathrm{g} a \sin \left(\mathrm{k} x_{1}\right)$
- weight of the lithosphere with thickness $t: \rho_{\mathrm{c}} \mathrm{g} t$

$$
\sigma=+\rho_{m} g a \sin k x_{1}+\rho_{c} g t+\text { const }
$$

Now account for the bending moments trying to flatten the lithosphere At the reference level, there are no horizontal stress gradients (why?)

$$
\begin{aligned}
\sigma= & +\rho_{m} g a \sin k x_{1}+\rho_{c} g t+D k^{4} a \sin k x_{1}+\text { const } \\
& =\left(\rho_{m} g+D k^{4}\right) a \sin k x_{1}+\rho_{c} g t+\mathrm{const}
\end{aligned}
$$

The flexural rigidity of the lithosphere adds a restoring force additional to the force coming from the topography

$$
\sigma=+\rho_{m} g a \sin k x_{1}+\rho_{c} g t+D k^{4} a \sin k x_{1}+\text { const }
$$

$$
=\left(\rho_{m} g+D k^{4}\right) a \sin k x_{1}+\rho_{c} g t+\text { const }
$$

Bending stresses in the lithosphere become dominant $k^{4} D>\rho_{m} g$ or $\quad k>\left(\frac{\rho_{m} g}{D}\right)^{\frac{1}{4}}$

In terms of the wavelength $\lambda, \quad \lambda=\frac{2 \pi}{k}<2 \pi\left[\frac{D}{\rho_{m g} g}\right]^{\frac{1}{4}}$
Short wavelengths can be supported elastically, but long wavelength waves just sag into the mantle based on their weight.

At the reference level in the asthenosphere, there are no horizontal stress gradients (why?)

Supportable wavelengths

Bending stresses in the lithosphere
become dominant $k^{4} D>\rho_{m g}$ or $k>\left(\frac{\rho_{m} g}{D}\right)^{\frac{1}{4}}$
Flexural rigidity $\quad D=M t^{3} / 12$
Elastic modulus $M=E /\left(1-v^{2}\right)=10^{10} \mathrm{~Pa}$
$\rho_{\mathrm{m}} \mathrm{g} \sim 0.3 \times 10^{5} \mathrm{~Pa} \mathrm{~m}^{-1}$, and with $t=100 \mathrm{~km}, D=10^{24} \mathrm{~Pa} \mathrm{~m}^{3}$

So bending stresses become important for $\lambda<500 \mathrm{~km}$

At the reference level in the asthenosphere, there are no horizontal stress gradients (why?)

How to measure earthquake size?
(A) - by amount of energy released

$$
m=c_{1} \log E+c_{2} \quad E=\begin{gathered}
\text { energy } \\
\text { released }
\end{gathered}
$$

$\begin{aligned} & \text { eeg. Richter } \\ & \text { Magnitude }\end{aligned} \quad m=c_{1} \log E+c_{2} \quad E=\begin{array}{r}\text { energy } \\ \text { released }\end{array}$
But how to measure the energy? Energy goes into

1) elastic waves, a consticuraves.

- speed of rupture matters

2) production of fault gorge (Crushing rode)

- rock type matters.

3) frictional heating of fault zone

- normal and shear stresses mather
- coefficient of friction matters

4) potential energy (uplift \& subsidence)
only 1) is readily available to seismologists Maybe 4), offer geodetic resurvey.

So getting a measure of totalenergy release can be difficult.

Estimate strain energy released?
Maybe instead of measuring the energy directly, we car estimate the energy release based on the strain energy, which we can estimate from a few parameters of the rock and the fault.
Prior to the quake, elastic energy wasstored in
the rock around the fault. the rock around the fault.

$\frac{d}{2}=\operatorname{ship}$ during quake (one side
$A=$ area of fault. rupture.
$L=$ distance away from fault where permanent offset is small.

Estimate strain energy in a spring?

Energy released by a spring

Now lots use a block of a contunum as the sporing.

The force is $|\underline{F}|=\sigma_{x y} d x \Delta z$ required to bring rock
The energy is $E=F d=\left(\sigma_{x y} \Delta x \Delta z\right) d$
The shat strain is $\epsilon_{x y} \sim d / \Delta y$ inside the block.

Energy per unit volume
In general
$\frac{\text { Energy }}{\text { Volume }} E / V=\sigma_{x y} \epsilon_{x y}$

$$
\text { So } \begin{aligned}
E & =\left(\sigma_{x y} \Delta x \Delta z\right)\left(\epsilon_{x y} \Delta y\right) \\
& =\sigma_{x y} \epsilon_{x y}(\Delta x \Delta y \Delta z)=\sigma_{x y} \epsilon_{x y} \vee
\end{aligned}
$$

Stored elastic strain energy in a volume is

$$
E=\int_{V} \sigma_{x y} \epsilon_{x y} d V
$$

Our fault has stored up elastic strainenergy, and it releases it durnig a quake $\left(\sigma_{x y} \rightarrow 0\right)$.

$$
\begin{aligned}
E & =\int_{V} \sigma_{x y} \epsilon_{x y} d V \\
& =\int_{V} \mu \epsilon_{x y}^{2} d r
\end{aligned}
$$ constitutive parameter a

Simple, but not maybe simple enough ...
For the fault. $\epsilon_{x y} \sim \frac{d}{L}$ strum
$d V \sim A L$ volumestrained.
so $E=\int_{V} \mu \dot{t}_{x y}^{2} d V \sim \mu\left(\frac{d}{L}\right)^{2} A L$

$$
=\mu A d\left(\frac{d}{L}\right)
$$

We cor estrinete μ (rack elasticity)
A (rupture ara)
d (fault motion)
But estimating L is tricky
So let's lock for a better way to estimate eartinguako size.
(B) Moment Magnitude

Shear traction $\sigma_{x y}$ brought fault to point of failure. ($\sigma_{x y}$ corresponds to P_{2} in Raymond notes)

$\sigma_{x y}=\mu \epsilon_{x y}$ - constitutive relation $\epsilon_{x y}=\frac{d / 2}{L}-$ strain
So, on ore side of fault

Moment release is

$$
M_{1}=\left(\mu \epsilon_{x y}\right) A L=\frac{\mu d A L}{2 L}=\frac{\mu d A}{2}
$$

Both sides of the fault release moment
Moment release is

$$
\begin{aligned}
& M=2 M_{1}=2\left(\frac{\mu A d}{2}\right)=\mu A d . \\
& M=\begin{array}{l}
\text { elastic } \\
M \text { modulus }
\end{array} \times \begin{array}{|}
\text { Fault } \\
\text { area }
\end{array} \times \text { Slip }
\end{aligned}
$$

All are easily estimated.

$$
M=\mu A d
$$

We don't need to know where P is located,

