ESS 411/511 Geophysical Continuum Mechanics Class \#26

Highlights from Class \#25 - Andrew Gregovich
Today's highlights on Friday - Madie Mamer
Problem Set \#7

- is posted. We will do just the first 2 questions.

Midterm

- Has been marked, and I will return annotated versions to you later today.
- We can discuss results on Thursday.

For Friday

- Read (https://courses.washington.edu/ess511/NOTES/)
- Ed's note on volume elements
- Ed's note on conservation laws
- Ed's note on constitutive relations
- ESS 511 60-second project updates on Friday

ESS 411/511 Geophysical Continuum Mechanics Class \#26

For Problems Lab tomorrow

- Read (https://courses.washington.edu/ess511/NOTESД)
- Raymond notes on stress and moments
- Turcotte and Schubert Section 3.9
- For Friday class
- Read (https://courses.washington.edu/ess511/NOTES/)
- Ed's note on volume elements
- Ed's note on conservation laws
- Ed's note on constitutive relations

Broad Outline for the Quarter

- Continuum mechanics in 1-D
- 1-D models with springs, dashpots, sliding blocks
- Attenuation
- Mathematical tools - vectors, tensors, coordinate changes
- Stress - principal values, Mohr's circles for 3-D stress
- Coulomb failure, pore pressure, crustal strength
- Measuring stress in the Earth
- Strain - Finite strain; infinitesimal strains
- Moments - lithosphere bending; Earthquake moment magnitude
- Conservation laws
- Constitutive relations for elastic and viscous materials
- Elastic waves; kinematic waves

Class-prep: Please give me a moment ...

Please Read Raymond notes on Stress and Moments on class web site
 https://courses.washington.edu/ess511/NOTES/CFR CHAPTERS/CFR stress notes.pdf

"Moment" and torque" are often used interchangeably, although technically a moment is a static concept, and torque applies to a rotation motion. Both involve a vector cross product between a force and a lever arm (or moment arm), so the units are Newton meters (N m). The first figure illustrates the moment exerted around the point P by a point mass m on the end of a stiff low-weight wire and subjected to gravity.

$\hat{e}^{\hat{e}_{2}} \hat{e}_{1} \hat{e}_{3}$

Now let's put a second mass on the wire, and see how the moments work.

Assignment

- What is the moment exerted by mass m_{1} at point $x_{1}=0$?
- What is the moment exerted by mass m_{2} at point $x_{1}=0$?
- What is the total moment exerted by both masses m_{1} and m_{2} at point $x_{1}=0$?
- What is the moment exerted by mass m_{2} at point $x_{1}=$ r_{1} ?
- Suppose that we keep adding more discrete masses on the wire until we effectively have a solid steel bar. In a couple of sentences, explain how you could still find the net moment exerted at any particular point, such as $x_{1}=0$. (Consider that integral calculus could help.)

A hanging plate

Average stress across the beam (per unit width)

Plane at x_{1} must support the weight of all material to the right. e.g. $<\sigma_{12}>$ t is vertically directed force per unit width in x_{3}

$$
\begin{aligned}
& <\sigma_{11}>t=\rho g_{1}\left(L-x_{1}\right) t=0 \\
& <\sigma_{12}>t=\rho g_{2}\left(L-x_{1}\right) t=0 \\
& <\sigma_{13}>t=\rho g_{3}\left(L-x_{1}\right) t=0
\end{aligned}
$$

Although $\left\langle\sigma_{11}\right\rangle=0$, there must be

- tension ($\sigma_{11}>0$) in the upper part and
- compression $\left(\sigma_{11}<0\right)$ in the lower part,
in order to prevent the material to the right from falling down.

Incremental moment at x_{1} due to outboard weight

Incremental moment at x_{1} exerted by thin slice $\mathrm{d} x_{1}$ ' of slab at x_{1}, e.g. $\left\langle\sigma_{12}>t\right.$ is vertically directed force per unit width in x_{3}

$$
d M_{g}=-\rho g t d x_{1}^{\prime}\left(x_{1}^{\prime}-x_{1}\right)
$$

Now add up the incremental moments at x_{1} due to all thin slices $\mathrm{d} x_{1}$ ' to the right of x_{1}

$$
M_{g}=\int_{x_{1}}^{L} \rho g t\left(x_{1}-x_{1}^{\prime}\right) d x_{1}^{\prime}=-\frac{1}{2} \rho g t\left(L-x_{1}\right)^{2}
$$

The force per unit width: $\rho \mathrm{td} x_{1}$,
The lever arm: $\left(x_{1}-x_{1}{ }^{\prime}\right)$

Incremental moment at x_{1} due to stress in the beam

$$
M_{t}=+\int_{-1 / 2}^{U / 2} \sigma_{11}\left(x_{1} x_{2}^{\prime}\right) x_{2}^{\prime} d x_{2}^{\prime}
$$

The force per unit width: $\sigma_{11}\left(x_{1}, x_{2}{ }^{\prime}\right) \mathrm{d} x_{2}{ }^{\prime}$ The lever arm: $x_{2}{ }^{\prime}$

Shear stresses at x_{1} don't contribute because they have no moment arm around x_{1}
σ_{11} is assumed to be linear, but it is a very good assumption.

Now include tractions on the top and bottom

$F_{2}\left(x_{1}^{\prime}\right)=-\rho g t+N_{\text {top }}-N_{\text {bottom }}$
$F_{1}\left(x_{1}^{\prime}\right)=S_{\text {top }}-S_{\text {bottom }}$

Putting it together

Now include tractions on the top and bottom

$$
F_{2}\left(x_{1}^{\prime}\right)=-\rho g t+N_{\text {top }}-N_{\text {boutom }}
$$

$$
: \sigma_{11}>t+\int_{x_{1}}^{L} F_{1}\left(x_{1}^{\prime}\right) d x_{1}^{\prime}+P_{1}=0
$$

$$
F_{1}\left(x_{1}^{\prime}\right)=S_{\text {top }}-S_{\text {botuom }}
$$

Putting it together

$$
\begin{aligned}
& \left\langle\sigma_{11}\right\rangle=\frac{1}{\prime}\left\{P_{1}+\int^{L} F_{1}\left(x_{1}^{\prime}\right) d x_{1}^{\prime}\right\} \\
& \left.<\sigma_{12}\right\rangle t+\int_{x_{1}}^{L} F_{2}\left(x_{1}^{\prime}\right) d x_{1}^{\prime}+P_{2}=0
\end{aligned}
$$

$$
<\sigma_{12}>=\frac{1}{t}\left\{P_{2}+\int_{x_{1}}^{L} F_{2}\left(x_{1}^{\prime}\right) d x_{1}^{\prime}\right\}
$$

$$
\begin{aligned}
M_{L} & =\int_{x_{1}}^{L} F_{2}\left(x_{1}^{\prime}\right)\left(x_{1}^{\prime}-x_{1}\right) d x_{1}^{\prime}+P_{2}\left(L-x_{1}\right)-P_{1}\left(u_{2}(L)-u_{2}\left(x_{1}\right)\right) \\
M_{t} & =+\int_{-/ / 2}^{/ 2} \sigma_{11}\left(x_{1}, x_{2}^{\prime}\right) x_{2}^{\prime} d x_{2}^{\prime} \\
M_{t} & +M_{L}=0 \\
M_{t}\left(x_{1}\right) & =-\int_{x_{1}}^{L} F_{2}\left(x_{1}^{\prime}\right)\left(x_{1}^{\prime}-x_{1}\right) d x_{1}^{\prime}-P_{2}\left(L-x_{1}\right)+P_{1}\left(u_{2}(L)-u_{2}\left(x_{1}\right)\right)
\end{aligned}
$$

