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Earth and Space Sciences 411/511  

Geophysical Continuum Mechanics 
Fall 2021 

 
Study Questions for Final Exam 

 
The exam is closed-book. You are welcome to use a calculator and a sheet of notes.  
The time for the exam will be 2.5 hours. If you need more time, please draw and annotate a line 
on your answer sheets after 2.5 hours to indicate how far you got in 2.5 hours, then continue.  
The actual exam will be composed of 4 of these questions, or closely related questions. 
Be sure to explain in words what you are doing at each step, and read the Tips for Writing an 
Exam on the class web site. 
We strongly encourage you to try all the questions before you take the test. If you try to write the 
test without solving the questions ahead, you will run out of time. 
 

1. Material and spatial coordinates 
(a) Particles originally at X=(X1,X2,X3), are subsequently found at time t at positions given by 

x1=X1 + X3 (exp(-t) – 1) 
x2=X2 exp(-t) 
x3=X3 exp(t) 

• Find the particle that is at x = (x1, x2, x3) at time t. 
• Express the velocity field in spatial coordinates. 
• Express the displacement u in both material and spatial form. 
 

(b) The temperature field T(x,t) in the body follows 
 T = exp(-t) (3x1 + x2 - 2x3) 

• Express the rate of change of temperature in both material and spatial form. 
 
2. Troubles at Mardi Gras 

According to an article in Eos [November 07, 2006, 87(45)], coastal Louisiana and the 
Mississippi delta are sinking.  Who would have thought there might be consequences? See also 
T.H. Dixon (2015) Eos [August 27, 2015].   See website for more papers about New Orleans. 

 The 2006 article identifies 3 different mechanisms of sinking, quite apart from the challenge 
of rising sea level. These sinking mechanisms include:  

1. Compaction of Holocene sediments (the Holocene is the most recent 10,000 years, since 
the end of the last Ice Age). The sediments have high porosity and high water content 
when deposited, and the water is squeezed out over time, due to weight of additional 
sediment deposited on top. 

2. Isostatic sinking of Earth’s lithosphere due to the sediment load deposited in the river 
delta. 

3. Normal faulting of the frontal parts of the delta, as blocks of sediment slip off into deeper 
water.  (See figure, and recall normal faulting of the Tibetan Plateau as seen on the World 
Stress Map.) 
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Vertically exaggerated 
cartoon of a delta built from 
sediments carried by a 
river.

Concerned that tourist brochures printed in future years will have to be modified to advise 
visitors to bring scuba gear, the Greater New Orleans Mardi Gras Finance, Food, and Partying 
Advisory Committee wants to hire an acknowledged world expert in Geophysical Continuum 
Mechanics to advise them on the future of relative sea level (RSL) in and around their fair city.  

Congratulations, you have just won the contract! 
• Describe in prose, in approximately 1 page (maximum 2 pages), the physical processes that 

your model includes for each of the 3 mechanisms, how you describe the mechanism in your 
model, and the physical parameters that your model needs in order to compute strain and strain 
rates. You are welcome to include a few diagrams and equations, but don’t try to include 
derivations. (Politicians are not interested in derivations.) 

 
 
3. Tensors 
a) Strain compatibility 

A strain tensor eij for small displacements ui can be written as . This tensor has 9 
elements, but due to symmetry, at most 6 of those can take distinct values.   

• Which elements are distinct, and which ones are not? 
• Can those 6 elements of eij be assigned to be independent functions of position xi, and 

still represent deformation of a continuum expressed by a 3-component vector ui without 
overlaps or gaps?  Why or why not? 

Consider the symmetric matrix  

 

where (x1, x2, x3) is the position vector.  
• Prove by direct manipulation of the matrix elements whether this matrix corresponds to a 

continuous single-valued strain field ui (or not). 
•  Verify your result with the strain compatibility equations. 

b) Stress conventions 
In continuum mechanics, stress sij is the force per unit area acting in direction ej on the 

coordinate face whose normal is ei. With this definition, extensile principal stresses are positive, 
and compressive principal stresses are negative.   

However, in a convention often used in earth sciences, shear stresses sij are given by the force 
per unit area acting in direction ej on coordinate face whose normal is ei, but compressive normal 
stresses (i=j) are positive and extensile normal stresses are negative. 

• Show that a matrix sij whose elements follow the geological convention is not a 
consistent representation of the physics.  (Hint – it is enough to find one counter-
example.) 
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4. Strain rate and strain on a lava flow  
Viscous lava is flowing in a long uniform rectilinear channel with width 2W.  Coordinate 

direction e1 is aligned with the channel and e3 is the cross-channel direction. The origin is at the 
channel center.  An intrepid volcanologist suspects that the velocity field of the lava at the 
surface has the form 

 

 
 

 
 
 
 
 

Her team of volcanologists wants to monitor strains on the lava crust as it moves. Using a 
helicopter, the team has placed 3 (very heat-resistant!) markers forming a small right isosceles 
triangle on the lava surface, such that the 2 equal sides dX(1)  and dX(3) were initially aligned with 
the e1 and e3 axes at time t=0.  They were unable to place the markers on the centerline of the flow. 
a) Find the deformation-gradient tensor FiA at time t. 
b) Using the deformation-gradient tensor, find the lengths and orientations of the 3 sides of the 

triangle at all subsequent times t. 
c) Find the Lagrangian finite-strain tensor that describes the deformation field as a function of X1, 

X3, and t. 
d) Find the Eulerian finite-strain tensor that describes the deformation field as a function of x1, x3, 

and t.  
e) Discuss the difference between your answers in  c) and d). 
 
 
5.  Conservation laws 

Explain in prose and diagrams:  
• The basic concepts underlying the development of conservation laws for mass, momentum, 

and energy in a continuum.  (While the concepts should be explained clearly, there is no 
need for lengthy derivations.) 

• The assumptions that have to be made about the material. 
• What are constitutive equations and why are they useful or necessary? 

 
 
6. Stress in rock towers 

In 3 dimensions, Hooke’s law for an isotropic medium is  s ij = l dij ekk + 2µ eij   and l and µ are 
the Lamé parameters. Strain can be described by eij = (1/E)( (1+n) s ij – n dij s kk). Young’s modulus 
E and Poisson’s ratio n can also be written in terms of l and µ. 

In isotropic media, the principal axes of stress and strain coincide, so in the principal coordinate 
system,  e(q) = (1/E) ((1+n) s(q) – n(s(1) + s(2) + s(3) )  )  where q takes the values 1, 2, or 3.  (Also 
see Turcotte and Schubert, beginning of Chap 3.) 
 
Devil’s Tower in Wyoming, like other tall and thin volcanic necks around the world, can be 
approximated by a rectangular column of rock of height h and footprint w´w that is free to expand 
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or contract in the horizontal directions. Some geophysicists are also rock climbers, and as they 
ascend Devil’s Tower, they almost all wonder how much the tower has shortened due to gravity 
(thereby bringing the summit closer to the surrounding plains, and shortening their climb).  
Coincidently, they also wonder how much the tower has expanded in the horizontal directions 
because of gravity (shortening their walk from the parking lot to the base of the tower). 
 
(a) Horizontal stresses are 0 (s(2)=s(3)=0). Why?  
(b) What is the vertical stress at a distance z from the top of the column?  
(c) What is the vertical strain distribution e(1)(z)? Use the equations above. 
(d) Now, the rock above any given depth has also contracted due to the mass above it. So to get 

how much the entire length of the column contracts in the vertical at z=h, integrate the strain 
e(1)(z) dz from 0 to h. 

(e) How much did it strain horizontally, and how much did it expand horizontally? Use the 
equations above.  

(f) Now	obtain	numerical	values	for	(d)	and	(e)	for	h	=	500	m,	w	=	200	m,	r	=	2700	kg	m-3,	E	=	
70	GPa,	n	=	0.25.	

 
 
7. Stress in sedimentary basins 

In 3 dimensions, Hooke’s law for an isotropic medium is  s ij = l dij ekk + 2µ eij   and l and µ are 
the Lamé parameters. Strain can be described by eij = (1/E)( (1+n) s ij – n dij s kk). Young’s modulus 
E and Poisson’s ratio n can also be written in terms of l and µ. 

In isotropic media, the principal axes of stress and strain coincide, so in the principal coordinate 
system,  e(q) = (1/E) ((1+n) s(q) – n(s(1) + s(2) + s(3) )  )  where q takes the values 1, 2, or 3.  (Also 
see Turcotte and Schubert, beginning of Chap 3.) 
 
Sometimes a geologist needs to estimate the state of stress in the crust or under a sedimentary basin. 
On time scales long enough that the region behaves like a fluid, the stress tensor is -P I where P = 
rgz.   

However, on times scales at which the material behaves elastically, s xx and s zz are not equal, 
and the stress tensor depends on the boundary conditions for the problem (i.e., how much support 
there is from the sides). For example, sedimentary basins in Nevada are grabens bounded by very 
steep normal faults, and fed by sediments eroded off nearby mountains. These basins could be 
approximated by rectilinear troughs with rigid vertical sides. The rigidity of the sides implies no 
horizontal strain i.e., e2=e3=0.  
Let’s investigate the stress state at an originally-unstressed surface that has been rapidly covered 
with sediments of density r = 2500 kg/m3 to a depth of 5 km in the recent past.  
a) What is the expression for vertical stress at depth z in the sediments?  At the buried former 

surface? 
b) What are the expressions for the horizontal normal stresses there? (They are also compressive, 

but smaller than the vertical stress.)  Find their values, assuming that n = 0.25 and E=70GPa. 
c) Write the complete stress tensor for a point at depth z in the center of the basin.  
d) What is the relationship between sxx, syy and szz?  
e) If all the sediments are removed rapidly on a time scale too short for the crust to behave like a 

fluid, the surface will return to its original state of stress prior to sedimentation. However, over 
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very long times, crustal materials flow viscously and the unequal principal stresses at depth 
approach lithostatic. Write the stress tensor at depth z after such a long time has passed. 

f) If 2 km of material is then rapidly eroded, what will the vertical stress be at the newly-exposed 
surface?  

g) If the material remained confined during the rapid erosion (i.e., e2 = e3 = 0), what will the 
horizontal compressive stresses be at the newly-exposed surface? Because we can assume that 
the sedimentary material is elastic on this short time scale, the equations above can also be used 
to relate changes Ds1, Ds2 and Ds3. 
[Note that Turcotte and Schubert state “This mechanism is one explanation for the wide-spread 
occurrence of near-surface compressive stresses in the continents.”] 

  
 
8. A Moving water blob 

The temperature in an ocean is uniform at T0, except for a cylindrical blob of warm water with 
radius R=R0, whose temperature structure is given in the material description (R2 = X2 + Y2) by 

                  
      

for R £ R0. 

                                                 
for R > R0.                                     (1)                   

The temperature does not vary with depth. The blob is moving at velocity v(t),  whose magnitude 
can vary through time.    Its peak temperature anomaly DT(t) may also vary through time, but the 
blob maintains its spatial shape (half cycle of cosine). It also moves in a straight line.  Let’s align 
the x axis with the velocity vector v(t) of the blob, so that  

 v(t) = [u(t), v(t), w(t) ]  = [ u(t), 0, 0]                                                           (2) 

a) Suppose the blob maintains its temperature, i.e. DT(t)=DT0 in Equation (1).  
• What	is	the	material	derivative	of	temperature	for	the	water	parcel	at	the	center	of	the	

blob,	as	it	moves	along	the	x	axis?	
 

b) Also suppose that the velocity is constant, i.e. v=[u0, 0, 0].    At time t=0, the center of the blob 
passes a moored buoy at x=[0, 0, 0]. 

[Hints: The independent variable in your solution will need to be a propagating function like a 
wave, i.e. with a form like (x-u0t).  You also need to account for the limited spatial extent of the 
blob, as in Equation (1) above.]  
i. Sketch	the	temperature	profile	along	the	x	axis	at	times	t=	-R0/u0,	0,	and	R0/u0.	
ii. Write	down	the	equations	that	describe	the	temperature	T(x,t)	in	spatial	coordinates	

along	the	x	axis	(y=z=0)	for	all	times	t.		
iii. Find	the	spatial	gradient	of	temperature	¶T(x,t)/¶x	along	the	x	axis	at	all	times.	
iv. Find	the	spatial	description	of	the	rate	of	change	of	temperature	¶T(x,t)/¶t	at	all	points	

along	the	x	axis.	
 
c) Now, what happens at the moored buoy at x=[0, 0, 0]? 
i. Find	the	temperature	history	recorded	by	the	moored	buoy.	

T (R, t) = T0 +ΔT (t)cos
πR
2R0

⎡

⎣
⎢

⎤

⎦
⎥

T (R, t) = T0
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ii. Find	the	spatial	gradient	of	temperature	at	the	buoy	at	x=0	at	all	times.	
iii. Find	the	rate	of	change	of	temperature	specifically	at	the	moored	buoy	at	x=0.	
 
d) Now find the rate-of-change history ¶T(0,t)/¶t at the moored buoy at x=0 using the material-

derivative equation in spatial coordinates, using your answers to a) and c) ii., and Equation (2)
 

  

          
Does your result agree with your answer in part c) iii. above? 

DT
Dt

=
∂T
∂t

+ v•∇T = ∂T
∂t

+u∂T
∂x

+ v ∂T
∂y

+w ∂T
∂z


