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Earth and Space Sciences 411/511 
Geophysical Continuum Mechanics 

Autumn 2021 Midterm Study Questions 
 
The Midterm exam will be a take-at-home test with a time limit of 2.5 hours.  It should be 
taken without access to notes, or books, or the web, or other people.  If you need more time, 
please draw and annotate a line on your answer sheets after 2.5 hours to indicate how far 
you got in 2.5 hours, then continue.  
The exam will consist of 4 questions, which will be selected from the questions below, 
perhaps after slight modifications of numerical constants.  We strongly encourage you to 
try all the questions before you take the test. If you try to write the test without solving the 
questions ahead, you will run out of time. 
Be sure to explain in words what you are doing at each step, and read the Tips for Writing an 
Exam on the class web site. 
 
Problem 1. Strength of the crust 
Assuming the crust has numerous preexisting faults in all directions, use Mohr circles to examine 
the strength of the crust, which is defined by the maximum s1 - s3 that the crust can support 
before faulting occurs to relieve stress. Assume that s1 and s3 are both negative, with s1 > s3  
(the mathematical/engineering convention in Mase, Smelser, and Mase) and s2 = s3. Draw the 
sliding line sS = -µ sN with coefficient of sliding friction µ = tan a and angle of sliding friction 
a = 35°. (Note faults have negligible cohesion.) Mark the lithostatic stress (vertical normal 
stress) associated with a depth of 6 km, that is, rgz, with r = 2800 kg/m3 and g = 9.8 m/s2 
(ignore possible pore pressure). Near Earth’s surface, one of the principal stresses must be 
vertical; the others will be horizontal. Draw the Mohr circle for s1 vertical and strength (s1-s3) 
as large as possible. Then draw the Mohr circle for s3 vertical and strength (s1-s3) as large as 
possible. Carefully estimate the ratio of the strength of the crust in compression to its strength in 
extension. Sketch the strength diagram down to 6 km for this sliding line. 
 
 
Problem 2. (M&M and MSM 3.9) 
The stress components in a circular cylinder 
of length L and radius r are given by 

!𝑡#$% = '
𝐴𝑥* + 𝐵𝑥- 𝐶𝑥- −𝐶𝑥*

𝐶𝑥- 0 0
−𝐶𝑥* 0 0

1  

 
(a) Verify that in the absence of body forces, the equilibrium equations (Mase, Smelser, & Mase, 
Eq. 3.27) are satisfied.   
(b) Show that the stress vector vanishes at all points on the curved surface of the cylinder.   

Hint: You can write a unit normal vector to the curved surface of the cylinder as  
  n = (x2/r) e2 + (x3/r) e3    or  n = 1/r (0, x2, x3). 
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Problem 3.  Mohr’s circles for stress  
Explain in prose (use of neat diagrams to illustrate your prose is good):  
 (a) what Mohr’s circles for stress represent about a stress state,  
 (b) how they can be constructed, and  
 (c) why they are useful for investigating fault failures.  
 
 
Problem 4. Mohr’s circles and fracturing 
Assume that s1 and s3 are both negative, s2 is halfway between s1 and s3, s1  ³ s3,  
(mathematical/engineering convention in Mase, Smelser, and Mase).  Internal friction exists (i.e., 
n = tan f > 0). Label all relevant axes, lines, points, angles etc. 
(a) Use Mohr circle diagrams to show why  
• rocks at depth do not fracture under lithostatic pressure alone and  
• the deviatoric stress needed for fracture increases at greater depth.  
(b) Suppose a rock under compression in all directions (e.g. deep in the Earth) is stressed close to 
its brittle limit.  Show graphically which change is more likely to make the rock fracture:  
• decreasing the magnitude of s1 or  
• increasing the magnitude of s3 by the same amount. 
• Please comment – is it intuitive that reducing the applied stress on a rock can make it break?  
 
 
Problem 5. (M&M or MSM 3.29) 
In a continuum, the stress field relative to axes Ox1x2x3 is given by   

!𝑡#$% = 2
𝑥3*𝑥* 𝑥3(1 − 𝑥**) 0

𝑥3(1 − 𝑥**)
3
-
(𝑥*- − 3𝑥*) 0

0 0 2𝑥-*
9   

Determine 
(a) the body force distribution if the equilibrium equations are satisfied through-out the field, 
(b) the principal stresses at point P = (a, 0, 2a1/2), 
(c) the maximum shear stress at P, 
(d) the principal deviator stresses Sij at P.   

Note typo in 3rd edition; s22 should be 3
-
(𝑥*- − 3𝑥*). 

Answer (which would not be provided on actual test.) 
(a) b1 = b2 = 0,  b3= -4x3/r. 
(b) sI = 8a, sII = a, sIII = -a  
(c) (𝜎;)<=> = ±4.5	𝑎  
(d) 𝑆F =

3G
-
𝑎, 𝑆FF = − H

-
𝑎, 𝑆FFF = −33

-
𝑎 
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Problem 6. (M&M or MSM 3.22) 
The state of stress referred to axes Px1x2x3is given in MPa by the matrix  

!𝑡#$% = '
9 12 0
12 −9 0
0 0 5

1 . 

Determine 

 

 
 

Determine   
(a) the normal and shear components, sN and sS, respectively, on the plane at P whose unit 
normal is  𝑛K = 3

H
(4�̂�3 + 	3�̂�*)  

(b) Verify the result determined in (a) by a Mohr’s circle construction similar to that shown in 
the figure from Example 3.5 (and in HW 4).  

Answer (which would not be provided on actual test.)   
 sN = 14.04 MPa, sS = 5.28 MPa  
Note that the Mohr circle construction is simplified by the fact that n is perpendicular to x3 and 
hence n* is perpendicular to the principal direction associated with principal stress value 5. So 
it’s going to plot where? You still need to determine the aij matrix, but it’s a fairly simple one. 

 
Problem 7: Heat flow in anisotropic rocks   
Heat flow q (in W m-2) is given by qi = -kijT,j where kij is the thermal-conductivity tensor  
(W m-1 deg-1), and T,j is the temperature gradient ¶T/¶xj. The bulk thermal conductivity can be 
written as a tensor when the rocks are composed of a stack of layers of different rock types, and 
when we view the rock on scales larger than the layer thicknesses. For example, in a stack of 
rocks with alternating high and low intrinsic conductivities, it is easier for heat to flow parallel to 
the layers than across the layers, because of the difficulty in getting through the low-conductivity 
layers. Suppose that the principal directions of the conductivity tensor are oriented normal to and 
parallel to the rock layering. Suppose further that the bulk conductivity normal to layering is half 
the bulk conductivity in the direction of the layering, and that there is no preferred direction in 
the plane of the layering.  
• If the rocks are not lying flat, but are tilted at 45º to horizontal, and if the temperature 

gradient is aligned with vertical, find the angle from vertical at which heat is actually flowing 
through the rocks on the scale at which the continuum approximation is valid. 
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Problem 8: The momentum flux tensor 
Let r and v denote the density and velocity of a fluid (e.g. a mud flow) at a given point P in 

space at a given time t. Flux describes the rate of transfer of something across a unit area. If P is 
a plane with normal n at point P, then the momentum flux across P at point P and at time t is 
defined to be rv (v . n) = r vv n, where vv is a dyad. (A dyad ab or aibj is special tensor formed 
by an outer product of two vectors a and b – see Mase, Smelser and Mase, Section 2.2.4). 
As indicated in the figure below,  

rv (v . n) dA dt   
is the momentum at point P and time t that is carried across an oriented differential surface 
element of area ndA with normal vector n in time dt; and rvv is called the momentum flux 
tensor at P and t. Consider its units and its vectorial nature. 
(a) If v = (v1, v2, v3), determine the Cartesian components of vv. What is the symmetric part of 
vv?  
(b) Work out the determinant of vv. Note that vv sends all directions n into the direction of v. 
This is a very strong condition because 3 dimensions get “squashed down” to 1. Think about the 
eigenvectors of vv, especially the two perpendicular to v. What must their eigenvalues be? Does 
vv have an inverse? Use the information above and the invariance of the trace to determine all 
three eigenvalues and eigenvectors of vv. Work out the determinant of vu, and consider the fact 
that vu w =  (u . w) v for any w so it too sends all directions into the direction of v. Does vu have 
an inverse? (Bottom line is, dyads are pretty limited tensors. But, any arbitrary tensor can be 
constructed as the sum of three dyads.) 
c) If v = (3, 2, -1) m/s and r = 2000 kg/m3 at a given point and time, determine the momentum 
flux across a plane with normal n = 1/5(3, 4, 0). Use SI units and consider that the coordinate 
system is (east, north, and up). 
d) Consider a mudflow traveling with velocity v = (3, 3, -1) m/s through a 10m high by 20m 
wide channel oriented due northeast. In 5 sec how much momentum passes through a hula hoop 
with radius 1m suspended in the middle of the channel? The surface encircled by this hoop has a 
normal that is horizontal but points at an angle of 20° east of north. For God’s sake, draw a 
diagram!! This large amount of momentum quantifies the greater ability of mudflows to move 
dense objects compared to, for example, high winds. 

   


