ESS 533/ATMS 512 Dynamics of Snow and Ice

Problem Set - Glen Flow Law for Ice Slabs

1. Deformation rates in inclined ice slabs

A uniform slab of ice sits on a long planar sloping surface. The x_1 axis is directed down-slope along the ice surface, which has a slope angle of α , and the x_2 direction is downward and normal to the sloping surface. The surface slope and the ice thickness are independent of x_1 and x_3 . The density of ice is ρ , and gravitational acceleration is g. There is no accumulation or ablation on the top surface of the ice, and no basal melting or accretion.

- Would you expect flow speed to vary in the x_1 or x_3 directions? Why or why not?
- Would you expect stress to vary in the x_1 or x_3 directions? Why or why not?
- Starting from the momentum conservation equations, find expressions for all components of the stress tensor σ_{ij}, the deviatoric stress tensor τ_{ij}, and the deformation rate tensor έ_{ij} as functions of depth x₂. Explain in words how you get your results.

2. Effects of stretching

A uniform slab of ice sits on a long planar sloping surface. The x_1 axis points downslope along the ice surface, which has a slope angle of α , and the x_2 direction is downward and normal and to the sloping surface. Surface slope and ice thickness are independent of x_1 and x_3 . The density of ice is ρ , and gravitational acceleration is g. The slab is also stretched uniformly at rate \dot{e} in the x_1 direction with a longitudinal deviatoric stress $\tau_{11}(x_2)$. A uniform accumulation rate b (ice equiv.) on the top surface of the ice, is just the right amount to prevent the slab from getting thinner or thicker over time.

- Would you expect flow speed to vary in the x_1 or x_3 directions? Why or why not?
- Starting from the momentum conservation equations, find expressions for all components of the stress tensor σ_{ij}, the deviatoric stress tensor τ_{ij}, and the deformation rate tensor έ_{ij} as functions of depth x₂. Explain in words how you get your results.
- Find the extensile strain rate *e* in terms of slab shape and climate.
- With extensile strain rate *e* uniform at all depths, what is the maximum value τ₀ that τ₁₁(x₂) takes, and where does it take that value?
- Outline how you could solve for $\tau_{11}(x_2)$ (or alternatively, $x_2(\tau_{11})$).
- Now do it. Use the value of $A = 3.5 \times 10^{-25} \text{ Pa}^{-3} \text{ s}^{-1}$ at -10 C (from Cuffey and Paterson p. 75).

3. The same but different

These two ice slabs look rather similar. With ρ =900 kg m⁻³, g=9.8 m s⁻²:

- Find the longitudinal strain rate *e* for 5 different glaciers or ice sheets in the Table below.
- Using your solution in Question (2), plot $\sigma(x_2)$ for each glacier.
- Find the relative impact of $\sigma(x_2)$ on the bed-parallel shear strain rate $\dot{\varepsilon}_{12}$ at the surface, at mid-depth, and at the bed for each glacier.
- Fill in the Table, and discuss implications of your findings in terms of glacier flow.

Property	Glacier	<i>j</i> =1	2	3	4	5
Thickness	$H(\mathbf{m})$	100	100	300	1000	3000
Accumulation rate	$b (m a^{-1})$	0	2.0	1.0	0.5	0.2
Slope	α (deg)	-3°	-3°	-2°	-0.5°	-0.2°
Strain rate $\dot{\varepsilon}_{11}$	ė					
$ au_{11}$ at surface	σ_0					
Shear strain enhancement	$\dot{\varepsilon}_{12}(j)/\dot{\varepsilon}_{12}(1)$	1				
$ au_{11}$ at mid-depth	σ(<i>H</i> /2)					
Shear strain enhancement	$\dot{\varepsilon}_{12}(j)/\dot{\varepsilon}_{12}(1)$	1				
τ_{11} at bed	$\sigma(H)$					
Shear strain enhancement	$\dot{\varepsilon}_{12}(j)/\dot{\varepsilon}_{12}(1)$	1				