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ESS 533/ATMS 512 
Dynamics of Snow and Ice 

Snow Dynamics Problem Set 
 
1. Snow Creep 

Snow on a sloping surface deforms according to a constitutive relationship between 
deformation rate ijε!  and stress σij described by bulk viscosity k and shear viscosity η. 
Equivalently, this constitutive relation can also be written in terms of two different 
constitutive parameters, ν and ηE, where ν is a viscous analogue of Poisson’s ratio, and 
ηE is a constant with units of viscosity (viscous analogue of Young’s modulus). 
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With the origin at the snow surface, the x1 axis points down-slope along the surface, 
which has a slope of α, and the x2 direction is downward and normal to the sloping 
surface. The snow does not glide along the ground.  The surface slope α, the snow 
thickness h, and the snow density ρ(x2) do not vary with x1 and x3. The average density 

)( 2xρ above depth x2 can be written as 
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a) Find all components of the stress tensor σij and the deformation rate tensor ijε!  as 
functions of surface-normal depth x2. (It is OK to neglect atmospheric pressure, 
because pores in the snow are presumably inter-connected and ice crystals 
themselves are incompressible. Therefore, air pressure gradients cannot contribute 
to compaction.) 

b) Find the down-slope creep velocity u1(x2) and the settling velocity u2(x2) in terms 
of ηE, ν, )( 2xρ  and surface slope α.   You can assume that ν is independent of 
stress and density. 

c) Find the angle θ of the velocity vector with respect to the surface (the x1 axis) in 
terms of Poisson’s ratio ν.   This angle is called “the creep angle” for snow, and it 
can be helpful for understanding the impacts of snow on buried or partially buried 
structures. What is the theoretical range of θ, based on the known range of ν (if 
Equation (1) correctly represents the constitutive behavior of the snow). 
 

2. Avalanche! 
At time t=t0, relatively homogeneous snow starts accumulating rapidly at the rate of 

b(t). on surfaces with uniform slope α.  During a storm cycle in maritime climates, the 
failure surface for avalanches is usually the base of the new snow, where the slope-
parallel shear stress increases with the integrated amount of snowfall, i.e. 

  σ xz (t) = g b(t ')cos(α)sin(α)dt '
t0
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Meanwhile, the fracture shear strength 𝜎!"(𝑡) of the new snow increases with time t, as 
stronger bonds develop between individual snow grains. Bonds develop faster when the 
normal stress 𝜎!!(𝑡) is higher, because the grains are pushed together. Bonds can also 



 2 

develop faster in denser snow, where grains are closer together. However, to use the latter 
factor, you must be able estimate the rate of densification of the snow.  We are not going 
to go there in this question.   

Instead, suppose that, as a really simple first model for snow-slope stability, you decide 
to try a fracture-strength rule for the snow at the base having the form 

           𝜎!" 𝑡 = 𝐶! + 𝐶!𝜎!! 𝑡  (𝑡 − 𝑡! ) 
where C0 and C1 are positive constants. (It would be really amazing if this were the best 
equation to describe the snow strength.  It is simply a first guess that should show the 
right qualitative tendencies. However, it does incorporate strengthening with age(t-t0), 
and strengthening with normal load σzz. The Conway&Wilbour SNOSS model uses a 
more complicated rule.) 

The stability index is a parameter that is used widely in the avalanche community.  It 
is defined by 
               Σ! 𝑡 = !!"(!)
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and the expected time to failure when Σ!drops to unity, is 
               𝑡! 𝑡 = !! ! !!
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You will use the values: 
 Slope angle  α=45o 

Accumulation rate b =1.3 gm cm-2 h-1 (measured on a horizontal surface) 
 Storm duration 6 hours 
 Initial snow strength  C0=120 Pa   
 Strength rate factor C1=0.1 h-1 
 

a) To answer this question efficiently, first check out the SNOSS paper; 
Conway, H. and C. Wilbour (1999) Evolution of snow slope stability. Cold 

Regions Science and Technology 30, 67-77. 
b) Show how you would derive the expression for shear stress σ xz (t)  

at the base of 
the new snow (be sure give attention to the cos(α) factor). 

c) Using the definitions above, explain in words the meaning of the stability 
parameter σ xz (t) and the time-to-failure parameter tz(t). 

d) Graphical solutions, e.g. using MATLAB, are probably the easiest way to address 
this problem.  Find and plot the histories of σxz(t), σfz(t), Σ!(𝑡) and tf(t) through 
the storm cycle if no avalanches occur.  Since Σ!(𝑡) can be very large when snow 
starts to accumulate, you might consider log (base 10) plots.                       

e) If avalanches did not get triggered, when might the slopes be (somewhat) stable 
again after the storm? 

f) If avalanches are triggered as soon as the slopes become unstable, how many 
times might avalanches occur during this storm, and when might they occur?  
Show your plots for this case. 

g) How low would the accumulation rate have to be, before you would predict no 
instability on this slope?   Show your plots. 

h) What are some weaknesses and limitations of this model? 
 


