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ESS	533/ATMS	512	Dynamics	of	Ice	Masses	
Homework	on	temperatures	in	ice	and	snow	

	
	
1.	Ice	is	described	by	

• density	of	ρi	=	900	kg	m-3,	
• thermal	conductivity	of	ki	=	2.5	W	m-1	K-1,		
• heat	capacity	of	c	=	2000	J	kg-1	K-1.	

Suppose	that	the	surface	temperature	on	an	ice	sheet	can	be	represented	as	

	 	 	 T (z, t) = Tav +Tcycle sin 2πωt( ) 	
where	ω	is	frequency	(not	angular	frequency,	e.g.	ω	=	1	yr-1	is	the	annual	cycle)	,	t=0	
on	March	21	in	the	northern	hemisphere,	and	snowfall	rate	is	“small”	(more	on	that	
later).		

(i) If	firn	has	a	density	of	ρ=500	kg	m-3,	how	do	you	expect	its	conductivity	to	
differ	from	the	conductivity	of	ice,	and	why?			What	characteristics	of	firn	
should	control	heat	transfer?			
Clearly	density	is	an	imperfect	proxy	for	thermal	conductivity,	but	often	
density	is	all	we	have.	Estimate	its	conductivity	kf	by	taking	the	average	of	the	
values	from	the	Schwerdtfeger	formula	(upper	limit)	and	the	van	Dusen	
formula	(lower	limit).		[Both	formulae	are	given	in	the	temperature	chapters	in	
Cuffey	and	Paterson	(2010)	and	in	Paterson	(1994).]	

	
(ii)	Use	the	analytical	solution	from	class	(or	Cuffey	and	Paterson	(2010),	Chapter	9)	

to	find	the	depth	where	the	amplitude	of	the	seasonal	cycle	is	reduced	to	e-1	of	its	
surface	value.	

(iii)	Find	the	depth	where	the	cycle	amplitude	is	reduced	to	e-2	of	its	surface	value	
Tcycle.	

(iv)		How	fast	does	the	temperature	maximum	move	downward,	and	how	long	does	
it	take	to	reach	the	depths	in	(ii)	and	(iii)?	

(v)	Now	let’s	revisit	the	question	of	“small”	in	the	definition	of	this	question.	How	
large	would	the	accumulation	rate	need	to	be	before	you	would	be	concerned	
about	downward	advection	quantitatively	impacting	your	results	above?		What	
dimensionless	number	would	you	use	to	assess	this	question?	

(vi)		Comment	on	the	relationship	between	your	answers	to	parts	(iv)	and	(v).	
	
(vii)	If	Tcycle=10oC,	how	deep	would	you	have	to	drill	a	hole	in	order	to	measure	the	

mean	annual	temperature	Tav	to	within	0.2oC	(±0.1oC	)?	
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2.	The	Péclet	number	expresses	the	relative	importance	of	advection	and	diffusion	
Show	how	the	Péclet	number	arises	naturally	when	you	nondimensionalize	the	1-D	
advective-diffusion	equation	for	heat	flow	with	constant	thermal	parameters,	
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3.	The	analytical	solution*	for	a	step	change	to	Tfinal	at	the	surface	(x=0)	of	a	half-
space	initially	at	Tinit	everywhere	
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where	κ	=	k/ρc	is	thermal	diffusivity,	and	erf	(	)	is	the	error	function,		

	 	
	
erf(y) = 2

π
exp −s2( )0
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*	Carslaw	and	Jaeger	(1946).	Conduction	of	heat	in	solids.	
	

(i)	Suppose	that	the	temperature	profile	at	a	site	in	East	Antarctica	was	uniform	
with	depth	at	the	Last	Glacial	Maximum	(LGM)	at	10	ka		(low	accumulation,	very	
slow	flow,	and	virtually	zero	geothermal	flux).		We	can	view	the	end	of	the	last	
ice	age	into	the	Holocene	10,000	years	ago,	as	a	step	change	in	surface	
temperature	from	TLGM	to	THOL.	Use	the	equation	(**)	above	to	find	the	depth	
today	where	we	could	expect	the	temperature	to	have	warmed	by	half	of	the	
surface	step.		

	
	
(ii)		Confirm	your	result	in	(i),	by	making	a	plot	of	temperature	profiles	at	1000-year	

intervals.		Use	TLGM=	-50oC,	THOL=	-40oC.	Use	Equation	(**)	above.			
	
	
(iii)	Now	plot	temperature	solutions	over	the	same	depths	and	times	for	an	ice	sheet	

that	had	the	same	T_LGM	but	a	linear	temperature	profile	at	LGM,	due	to	
geothermal	flux	qgeo	=	50	mW	m-2.		Use	Fourier’s	Law	and	Equation	(**)	above.	

	
	


