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On Wednesday, we continued our development of a flow law for crystalline ice. For the 
most part, we are still following Alley (1992). Throughout, Alley emphasizes that there is no 
perfect flow law for ice, but he says that in the most generalized case the creep parameter, n, is 
often thought to be 3. He derives a theoretical framework that shows this is the case for 
dislocation glide along the basal plane. This basal glide is likely the dominant mechanism of ice 
flow in most cases because other glide mechanisms are ~100-1000 times more resistant to 
flow. Mechanisms other than glide are possible in some scenarios, such as grain boundary 
sliding in temperate ice or dislocation climb at high stresses, and are discussed by Alley but I will 
not consider them here.  

 
To derive the creep exponent in the ice flow law for basal glide, Alley defines the bulk strain 

rate of ice as 
 𝜖̇ = 𝛼𝜌𝑏𝑣 (1) 

where 𝛼 is a geometric factor, 𝜌 is the density of dislocations, 𝑏 is the Burger’s vector (defining 
the motion of a dislocation), and the velocity of dislocations is  
 𝑣 = 𝛾𝜎 exp -

−𝑄
𝑘𝑇 2 (2) 

where 𝛾 is a constant, 𝜎 is the applied stress, 𝑄 is an activation energy, 𝑘 is Boltzmann’s 
constant, and 𝑇 is the temperature of the ice. Dislocation density is dependent on stress 
because more dislocations are created when the crystal is put under stress, 
 

𝜌 ≈ -
𝛽𝜎
𝜇𝑏2
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 (3) 

Combining equations (1-3) we come up with something that looks very familiar to Glen’s 
original flow law (Glen, 1955), 
 

𝜖̇ =
𝛼𝛽6𝛾
𝜇6𝑏 exp -

−𝑄
𝑘𝑇 2𝜎
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The constant term in front of the exponential is most commonly wrapped up into the rate 
factor, 𝐴9. Through this derivation, we see that there is a theoretical justification for assuming 
that the creep exponent, 𝑛, on the applied stress is equal to 3 for dislocation glide along the 
basal plane.  
 
 

 



 
 

Experiments show that 𝑛 = 3 is not the case for all (or possibly even most) glacial ice. In 
fact, Glen’s original work showed that it is closer to 4. Alley dedicates significant effort toward 
explaining the physical reasons why this might be. Here, I will point out one example at low 
stresses. Dislocation density, as defined above in equation 3, is stress-dependent and will 
approach zero dislocations as the applied stress goes to zero (see the dashed line in the above 
figure). However, in reality there is no such ice that is ‘dislocation-free.’ Instead, ice at low 
stresses approaches a constant dislocation density, 𝜌9, at low stresses. What this means for the 
flow law is that the 𝜎6 term from equation (3) disappears. Now the strain rate is only 
dependent on stress linearly. This mechanism of flow is diffusional, where molecules in the 
crystalline lattice are simply diffusing away from high stresses and toward lower stresses. We 
might find this near the surface of an ice sheet where stresses are low.  
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