Fairness and the Development of Inequality Acceptance
Ingvild Almås et al.
Science 328, 1176 (2010);
DOI: 10.1126/science.1187300

This copy is for your personal, non-commercial use only.

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of April 3, 2013):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/328/5982/1176.full.html

Supporting Online Material can be found at:
http://www.sciencemag.org/content/suppl/2010/05/25/328.5982.1176.DC1.html

This article appears in the following subject collections:
Psychology
http://www.sciencemag.org/cgi/collection/psychology

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. Copyright 2010 by the American Association for the Advancement of Science; all rights reserved. The title Science is a registered trademark of AAAS.
Fairness and the Development of Inequality Acceptance

Ingvild Almås,1,2† Alexander W. Cappelen,1* Erik Ø. Sørensen,1,2* Bertil Tungodden1,3*

Fairness considerations fundamentally affect human behavior, but our understanding of the nature and development of people’s fairness preferences is limited. The dictator game has been the standard experimental design for studying fairness preferences, but it only captures a situation where there is broad agreement that fairness requires equality. In real life, people often disagree on what is fair because they disagree on whether individual achievements, luck, and efficiency considerations of what maximizes total benefits can justify inequalities. We modified the dictator game to capture these features and studied how inequality acceptance develops in adolescence. We found that as children enter adolescence, they increasingly view inequalities reflecting differences in individual achievements, but not luck, as fair, whereas efficiency considerations mainly play a role in late adolescence.

It is well documented that adult humans are motivated by fairness considerations and are willing to sacrifice personal gains in order to eliminate inequalities they view as unfair (1, 2). It is also evident from the political debate, surveys (3, 4), and economic experiments (5–7) that most adults view some inequalities as fair. In particular, most adults believe that differences in individual achievements (5–8) and efficiency considerations of what maximizes total benefits can justify inequalities. We modified the dictator game to capture these features and studied how inequality acceptance develops in adolescence. We found that as children enter adolescence, they increasingly view inequalities reflecting differences in individual achievements, but not luck, as fair, whereas efficiency considerations mainly play a role in late adolescence.

An unequal distribution of income, but they disagree on whether inequalities reflecting luck are fair (7, 12).

To illustrate how efficiency and individual achievements may justify an unequal distribution of resources, consider two children, Anne and Carla, who discuss how to divide a cake. Anne appeals to efficiency when she argues that total benefits are maximized by giving her the largest share because she enjoys cake the most. Carla appeals to individual achievements when she argues that she should have the largest share because her contribution to making the cake was the largest. The legitimacy of these, and other, fairness considerations has been extensively discussed in the philosophical literature (13–15), and such considerations are important for how people make decisions in a wide range of situations (16). For example, in the workplace, some may find it fair that a more productive colleague has a higher wage, and, in allocating public funds, some may find it fair to pay some attention to which projects produce the greatest total benefits for the population.

Disagreements over questions of fair distribution are fundamental in human life, and to get a better understanding of the sources of such disagreements, it is important to study how fairness views develop in childhood (17). The development of children’s fairness views has been extensively studied in the psychological literature.

Table 1. Descriptive statistics (means ± SEM). Mean share given was calculated as the recipient’s share of total income for the pair.

<table>
<thead>
<tr>
<th>Share given and multiplier</th>
<th>Males in grade level (n)</th>
<th>Females in grade level (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5th (58)</td>
<td>7th (51)</td>
</tr>
<tr>
<td>(A) Share given in first part of experiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share given</td>
<td>0.422</td>
<td>0.449</td>
</tr>
<tr>
<td></td>
<td>±0.020</td>
<td>±0.017</td>
</tr>
<tr>
<td>(B) Share given in second part of experiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share given (multiplier = 1)</td>
<td>0.371</td>
<td>0.382</td>
</tr>
<tr>
<td></td>
<td>±0.031</td>
<td>±0.028</td>
</tr>
<tr>
<td>Share given (multiplier = 2)</td>
<td>0.400</td>
<td>0.418</td>
</tr>
<tr>
<td></td>
<td>±0.035</td>
<td>±0.030</td>
</tr>
<tr>
<td>Share given (multiplier = 3)</td>
<td>0.418</td>
<td>0.430</td>
</tr>
<tr>
<td></td>
<td>±0.037</td>
<td>±0.031</td>
</tr>
<tr>
<td>Share given (multiplier = 4)</td>
<td>0.408</td>
<td>0.435</td>
</tr>
<tr>
<td></td>
<td>±0.037</td>
<td>±0.034</td>
</tr>
</tbody>
</table>

Supporting Online Material
www.sciencemag.org/cgi/content/full/328/5982/1172/DC1
Materials and Methods
Figs. S1 to S7
Table S1
References
26 January 2010; accepted 2 April 2010
10.1126/science.1187532

*Norwegian School of Economics and Business Administration, Department of Economics, N-5045 Bergen, Norway. 1Centre of Equality, Social Organization, and Performance (ESOP), University of Oslo, N-0317 Oslo, Norway. 2Chr. Michelsen Institute, N-5892 Bergen, Norway. 3All authors contributed equally to this work.†To whom correspondence should be addressed. E-mail: ingvild.almas@nh.no

17. L. Rong et al., RNA 14, 1318 (2008).
22. E. Petroulakis et al., Cancer Cell 16, 439 (2009).
23. Y. Y. Kim et al., Cancer Res. 69, 8455 (2009).
27. Rapamycin was from LC laboratories and Calbiochem, PP242 was from Intekelline, and Torin1 was from N. Gray and D. Sabatini. Experimental procedures are described in the supplementary material. We thank M. Pende for S6K1/2 construct; M. Holcik and N. Colburn for antibody to PDCD4; K. Shokat, C. Rommel, L. W. Ler, S. Fumagalli, and M. Livingstone for advice; C. Lister and P. Kirk for assistance; and M. Daston for editing.
30. Rapamycin was from LC laboratories and Calbiochem, PP242 was from Intekelline, and Torin1 was from N. Gray and D. Sabatini. Experimental procedures are described in the supplementary material. We thank M. Pende for S6K1/2 construct; M. Holcik and N. Colburn for antibody to PDCD4; K. Shokat, C. Rommel, L. W. Ler, S. Fumagalli, and M. Livingstone for advice; C. Lister and P. Kirk for assistance; and M. Daston for editing.
29. Ingvild Almås,1,2† Alexander W. Cappelen,1* Erik Ø. Sørensen,1,2* Bertil Tungodden1,3*
(18–23) and also, more recently, in the economic literature (24–28). It has been shown that, with age, young children tend to become less selfish in their reasoning (18, 19, 21, 23) and choices (20, 24, 25, 28), whereas the evidence for adolescents is more mixed (23, 25–27, 29). Furthermore, with age, children tend to move from a strict egalitarian view toward fairness views taking into account individual contributions and circumstances (17–21, 30).

There has, however, been little research on the development of two important features of adults’ distributive behavior, namely that they distinguish between achievements and luck (7, 12) and take efficiency considerations into account (9–11). To study the development of these features, we conducted a computer-based experiment with children in 5th grade to 13th grade (31), where we used two versions of the dictator game. In the dictator game, the dictator is assigned an amount of money to distribute between him or herself and another person, and the total income of the two participants is unaffected by how the money is distributed. In such a situation, there is no apparent fairness argument justifying an unequal division of the money. In the first part of the experiment, we modified this design by introducing a production phase, such that the money to be distributed was earned and depended on individual achievements and luck. In the second part of the experiment, the dictator was given a number of points to distribute, and the distribution of points determined the income for each of the two participants. To introduce efficiency considerations, we made the points most valuable for the other participant, so that the dictator could maximize the total income of the two by giving away all the points.

The framework for our analysis assumes that children make a trade-off between two motives in their distributive choices, self-interest and fairness, and that they may differ both in their level of self-interest and in what they consider fair. By observing how the children chose in a series of different situations, where different fairness views to a varying degree justified giving money to the other participant, we established the importance of each of the fairness views at the different grade levels.

Before they started the first part of the experiment, the participants were given complete information about both the production phase and the distribution phase. The production phase lasted 45 min, and the participants could move between two Web sites. At a production site, the participants could collect points by ticking off digit numbers. At an entertainment site, the sequence of screens filled with different three-digit numbers. The computer calculated how many points each participant could collect, and the earnings, partly reflecting luck in the random draw of prices. In the production phase, the participants could, however, observe an increase in the mean share produced with age, the average income to be distributed in each pair also increased with age (table S4).

The mean share given to the other participant in the first part of the experiment was very high, close to 45% for the whole sample, and there was no statistically significant difference in mean share given between 5th grade and 13th grade [(Table 1A), t test, unequal variance, \(P = 0.460 \) (males) and \(P = 0.179 \) (females)]. Hence, we did not find any evidence of a change in selfishness from mid-childhood to late adolescence (31). Moreover, we did not find any statistically significant differences in self-interest between males and females [(Table 1A), t test, unequal variance, \(P = 0.481 \) (5th grade), \(P = 0.438 \) (7th grade), \(P = 0.621 \) (9th grade), \(P = 0.996 \) (11th grade), and \(P = 0.330 \) (13th grade)].

We did, however, observe an increase with age in the acceptance of inequalities reflecting differences in production. The coefficient for share produced by the other participant, in a regression of share given, showed that older participants were much more likely to differentiate on the basis of individual achievements (Fig. 1A). The sharpest increase in the coefficient occurred from 5th grade to 7th grade, but there was also a further increase from 7th grade to 13th grade. There was a statistically significant difference between 5th grade and all other grades in the coefficient for share produced [multiple Wald tests of equality with Bonferroni adjustments, \(P = 0.001 \) (7th grade), \(P = 0.001 \) (9th grade), \(P = 0.025 \) (11th grade), and \(P < 0.001 \) (13th grade)], and between 7th grade and 13th grade (Wald test, \(P = 0.034 \)).

We observed the same developmental pattern for

Table 2. Estimates of the choice model (estimate ± SE). The complete set of estimates is in table S3.

<table>
<thead>
<tr>
<th>Grade level</th>
<th>5th</th>
<th>7th</th>
<th>9th</th>
<th>11th</th>
<th>13th</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share of egalitarians</td>
<td>0.636</td>
<td>0.401</td>
<td>0.272</td>
<td>0.267</td>
<td>0.224</td>
<td>0.235</td>
</tr>
<tr>
<td>Share of meritocrats</td>
<td>0.054</td>
<td>0.220</td>
<td>0.363</td>
<td>0.396</td>
<td>0.428</td>
<td>0.287</td>
</tr>
<tr>
<td>Share of libertarians</td>
<td>0.310</td>
<td>0.379</td>
<td>0.364</td>
<td>0.337</td>
<td>0.347</td>
<td>0.348</td>
</tr>
<tr>
<td>Log likelihood</td>
<td>-827.4</td>
<td>-881.4</td>
<td>-797.6</td>
<td>-865.0</td>
<td>-790.3</td>
<td>-4219.7</td>
</tr>
</tbody>
</table>
both males and females; there were no statistically significant gender differences in the coefficient for share produced [Wald test, $P = 0.980$ (5th grade), $P = 0.949$ (7th grade), $P = 0.534$ (9th grade), $P = 0.571$ (11th grade), and $P = 0.214$ (13th grade)]. The coefficient for the relative price was also statistically significantly different from zero, but stable across grade levels and gender (31).

To further study the importance of production and price in explaining the observed behavior, we estimated a model of individual choices that captured the basic assumptions of our theoretical framework and allowed for some randomness in the participants’ choices (31). Specifically, for each grade level, we estimated a distribution of the weight attached to fairness and the share of participants motivated by different fairness views. Informed by normative theory and our own previous work (7, 12), we assumed that there were three salient fairness views in this situation: strict egalitarianism (13), finding all inequalities unfair; meritocratism (32), justifying inequalities reflecting differences in production; and libertarianism (34), justifying all inequalities in earnings.

We found striking differences in the prevalence of fairness views between the grade levels (Table 2). The majority of 5th graders were strict egalitarians, and, remarkably, there were almost no meritocrats at this grade level. In contrast, meritocratism was the dominant position in late adolescence, and the share of strict egalitarians fell dramatically. The share of libertarians fell dramatically. The share of meritocrats increased with age, with a peak at 13th grade. These patterns are reflected in the coefficient for the multiplier in a regression of share given (Fig. 1B). There was a statistically significant increase in the coefficient from 5th grade to 13th grade for both males and females [Wald test, $P = 0.003$ (males) and $P = 0.019$ (females)], which reflects that older participants were more likely to differentiate on the basis of efficiency considerations. This development, however, took place later in adolescence than the differentiation on the basis of individual achievements. Moreover, we observed a statistically significant difference between males and females from 9th grade, where efficiency considerations played a more important role for males than females [Wald test, $P = 0.316$ (5th grade), $P = 0.152$ (7th grade), $P = 0.005$ (9th grade), $P < 0.001$ (11th grade), and $P = 0.060$ (13th grade)].

Our analysis showed that children’s level of self-interest was stable across adolescence, whereas their fairness views changed fundamentally in the same period. In particular, we found increased importance of the meritocratic fairness view, which requires a distinction between different sources of inequality. We did not, however, observe a uniform move away from the two less complex fairness views. Although there was a sharp decrease in the importance of the strict egalitarian fairness view, the prevalence of the libertarian fairness view was stable throughout adolescence. These findings shed some light on the role of both cognitive maturation and social experiences in shaping children’s fairness preferences. The meritocratic fairness view presupposes the ability to distinguish between relevant and irrelevant information, a cognitive ability that matures during adolescence (33), which may partly explain why we observed increased prevalence of this view. The strict egalitarian and libertarian fairness views, however, are straightforward to implement, and thus, the different development for these two fairness views is hard to explain by cognitive maturation. This suggests that social experiences also play a role in shaping children’s fairness preferences.

References and Notes
22. C. Gilligan, In a Different Voice (Harvard Univ. Press, Cambridge, MA, 1982).
23. N. Eisenberg, G. Carlo, B. Murphy, P. Van Court, Child Dev. 66, 1179 (1995).
31. Materials and methods, as well as supporting text, are available as supporting material on Science Online.
34. We are grateful to S. Bowles and W. T. Harbaugh for valuable comments; R. H. Hansen and G. Myhrvold of the school authorities in Bergen for their cooperation; L. J. Eckhoff, T. Eriksen, M. Frøyosk, A. Furu, C. Haugnes, A. D. Hole, J. Håftuf, K. A. Karlstad, M. Ludvigsen, K. Rissvand Mo, C. Nygård, K. E. Stolke, J. L. N. Stensby, I. Søreide, and E. Waerstad for research assistance. This project was supported by the Centre for the Study of Mind in Nature (CSSM) at the University of Oslo and the Research Council of Norway, grant 185831.

Supporting Online Material
www.sciencemag.org/cgi/content/full/328/5982/1176/DC1
Materials and Methods
SOM Text
Fig. S1
Tables S1 to S4
References
20 January 2010; accepted 12 April 2010
10.1126/science.1187300

Downloaded from www.sciencemag.org on April 3, 2013