The Evolution of Fisheries Acoustics

LO: Identify and sequence hardware and analytic contributions made to Fisheries Acoustics.

The First Sonars

Sperm whale (*Physeter macrocephalus*)

Killer whale (Orcinus orca)

Underwater Sound

Leonardo da Vinci (1490)

using a tube...

'you will hear ships at a great distance'

Measuring Speed of Sound

Colladon and Sturm (1826), Lake Geneva, Switzerland

Sound speed estimate: 1435 ms⁻¹ $\Delta = 4$ ms⁻¹ from current values

20th Century Use of Sound

To 'fathom the ocean' Lieutenant Maury, US Navy (1859)

Making Echosounders Practical

Piezoelectric transducer (1917)

French Physicist: Langevin

(piezo = pressure)

1925: 'echo sounding' first used in scientific literature

Making Echosounders Practical

Belloc (1929):

Langevin-Florisson echosounder

The Echosounder

Acoustic Detection of Fish

Rallier du Baty:

1927 – 'false' signals on echosounder to cod shoal on Grand Banks

1928 – detected herring on a Bologne drifter

1st Lab Acoustic Fish Detection

Kimura (1929)

Bistatic sonar: source and receiver

Fish as Acoustic Targets (1930s)

Sund (1933)

"Herring false echoes"

Fish aggregations causing bottom like echoes

Fish as Acoustic Targets

Ronald Balls, Skipper of Violet and Rose

7 years fishing: a Marconi echometer

Recording Echosounder

Wood et al. (1933) marketed by Hughes

- first published echogram: Bokn (1934)
- sprat schools near surface

1st International Publication

Sund (ICES 1935)

Echogram of cod in Vestfjord, Norway

Dedicated Acoustic Survey

Runnstrøm (1937)

- herring surveys in Norway

Introduction of SONAR

1940s: WWII

Sound Navigation and Ranging

Access to Technology (1940s)

M.S. XII (Kelvin & Hughes)

Ball's Report (ICES 1948)

Correlation between marks in water and herring catch

Echosounder Applications

Fish finding
Gear monitoring
Abundance surveys
Plankton studies
Fish behavior

Quantifying Acoustic Data (1950s)

- ICES Symposium:
 Echosounding as an aid to fishing
- Cushing (1952) echo units

Rationale for Sonar Need

Locating Icebergs:

Titanic (1912)

WWI Detecting Submarines:

UK Anti-Submarine Division + 'ic' (ASDIC)

Quantifying Acoustic Data

- Trout et al. (1952)
 - suggested echo counting
- Hersey and Backus (1954)
 - frequency dependent scattering
- Middtun & Saetersdal (1957)
 - -"Fingernail" trace
 - Echo counting
 - 1st absolute estimate
- Richardson et al. (1959)
 - Echo amplitude measurement

Technology Advances (1960s)

Automatic Counting Devices:
Mitson and Wood (1961)

pulse counter

Craig and Forbes (1969)

pulse height analyzer

New instruments

- Netsondes
- Side scan sonar
- Sector scanning

Analytic Advances

Dragesund and Olsen (1965)
- echo integration

Validating Assumptions

Scherbino & Truskanov (1966)

- absolute abundance estimate
- abundance ∝ squared echo voltage

Acoustic Biology

Middtun and Hoff (1962)

- acoustic properties of fish
- influence of tilt

Exploiting Frequency Dependence

McNaught (1968, 1969)

- frequency dependence
- potential for inverse problem

Holliday (1977) inverse algorithm

Digital Age (1970s)

Color displays
Digital electronics

New Hardware & Techniques

Transponding fish tags

Doppler effect

Multiple frequencies

Horizontal sonar

Low Freq. side scan sonar

Acoustic Biology

Love (1971): TS ∞ fish length

Nakken and Olsen (1977): effect of tilt on TS

Linearity Principle (Foote 1983)

Scientific Echosounder Evolution

BioSonics 1983

Simrad 1984

Continued Development

Simrad ES-380, EK-400 (1984)

Foote et al. (1987)

calibration manual

EK-400

Multi-frequency Systems

Simrad EK-500 (1988)

BioSonics 102 (1989)

Multifrequency Acoustic Profiling System (MAPS 1995)

Standardization of Techniques (1990s)

Survey Design

EchoView Software (1995)

TS methods (Ona 1999)

Vessel Noise Standard

Mitson (1995): ICES 209

Miller Freeman

Scotia

Atlantic herring at 20 m

Technological Advances

'Digital' transducer: Biosonics DT series 1994

Environmental sensor integration: Biomapper II

Alternate platforms: AUV

School Volumes

Multibeam Sonar Applications

Horizontal: Misund et al. 1995

Vertical: Gerlotto et al. 1999

Acoustic Visualizations

Multibeam Sonar Applications

image M. Wilson

Herring Schools, Salmon Bank, San Juan Island, WA

Imaging Sonars: Acoustic Cameras

Dual Frequency Identification Sonar: acoustic imaging sonar

- 900 kHz 1.8 MHz
- 96 beams
- 0.3° horizontal x 11° vertical

Next Generations (2000s - 2010s)

Simrad EK-60 (2001)

Cabled Probes (IMR 2009)

ME/MS 70

broadband, multibeam echosounder/sonar

configurable beams, frequencies

Broadband Revisited

Transducers and transceiver - discrete and broadband data

Konsberg EK-80

^{*} HTI has offered matched filters since 1992

Conclusions

- Technological advances (hardware and software) continue
- Diverse set of hardware and analytic approaches Integration of hardware on common platforms Dynamic set of applications with fundamental goals