
Principles of Underwater Sound

LO: Apply characteristics of sound in water to calculate sound levels.

What is Sound?

A disturbance propagated through an elastic medium causing a detectable alteration in pressure or a displacement of the particles.

Measuring Sound

```
Pressure (p): force/area
     p = force/area, units Newton/m<sup>2</sup> (Pascal), [MLT<sup>-2</sup>/L<sup>2</sup>] = [MT<sup>-2</sup>L<sup>-1</sup>]
          Imperial to SI conversion: 1 \muBar = 10<sup>5</sup> \muPa
Power (P): force * velocity
  P = force * velocity, units watts, [MLT^{-2}*LT^{-1}] = [ML^2T^{-3}]
Intensity (I): power/area
  I = power/area = p^2/\rho c
        where \rho = density, mass/volume, units kg m<sup>-3</sup> [ML<sup>-3</sup>]
```

Quantity Relationships

Intensity is proportional to pressure squared

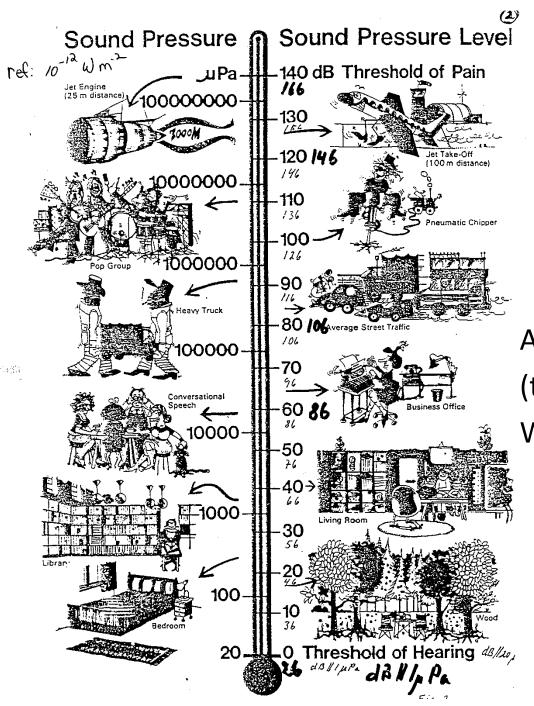
$$I \propto p^2$$

Pressure squared is proportional to power $p^2 \propto P$

What is relationship between Intensity and Power?

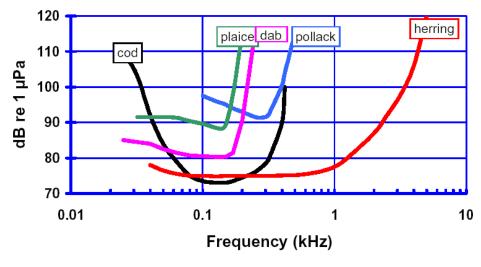
What is a Decibel?

A ratio in logarithmic form.

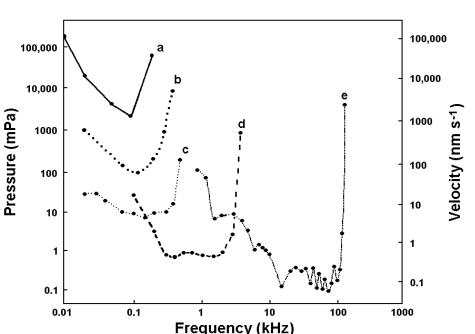

Intensity ratio: 10 $\log (I/I_o)$ where I_o is the reference intensity at 1 m

Pressure ratio: 10 log ($p^2/\rho c/p_o^2/\rho c$) = 20 log (p/p_o) where p_o is a reference pressure (1 μ Pa) at 1 m

Example:


If $I_0 = 1 \text{ Wm}^{-2}$ Then $I = 100 \text{ Wm}^{-2}$ becomes $10 \log(100/1) = 20 \text{ dB} || 1 \text{ Wm}^{-2}$

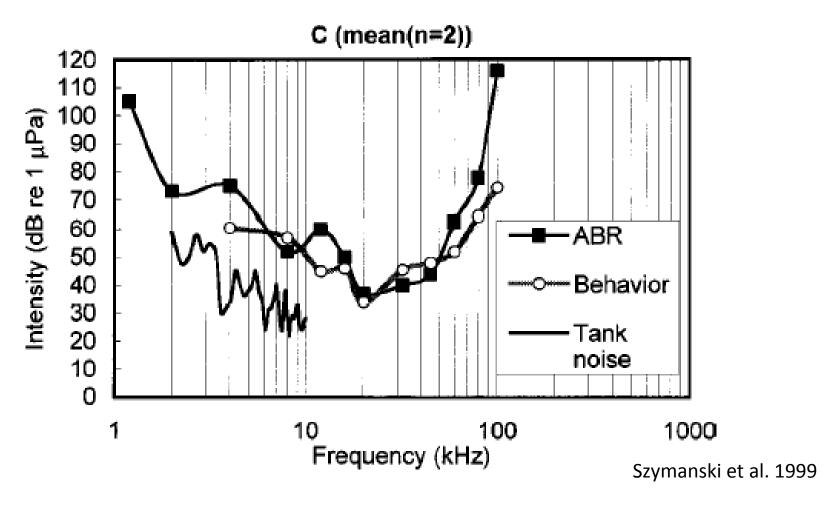
If $p_o = 1 \mu Pa$ Then $p = 100,000 \mu Pa$ becomes 20 log(100,000/1) = 100 dB || 1 μPa



Air ref. = 0 dB (threshold of human hearing) Water ref. = 26 dB

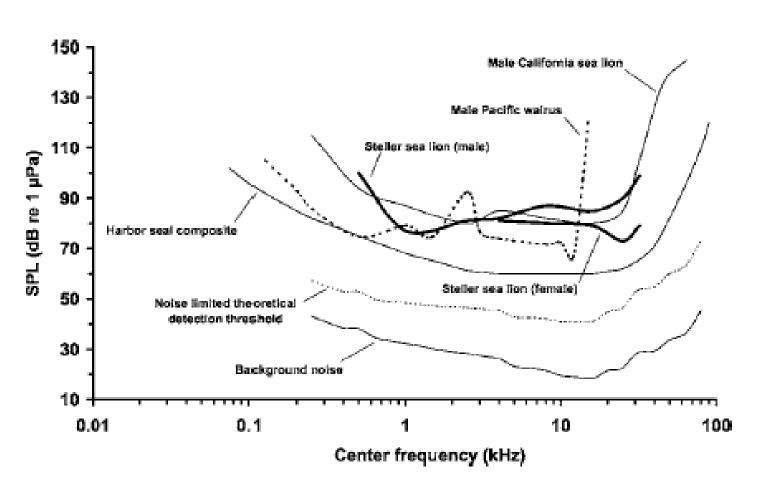
Animal Hearing Thresholds & Ranges

Human Hearing: 20 Hz to 20 kHz

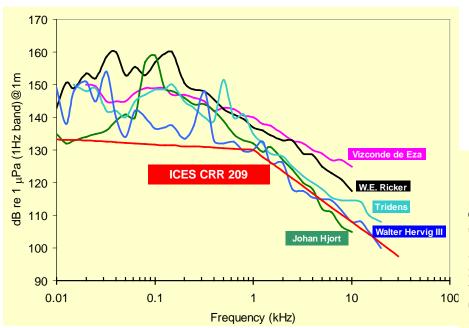


courtesy of R. Mitson

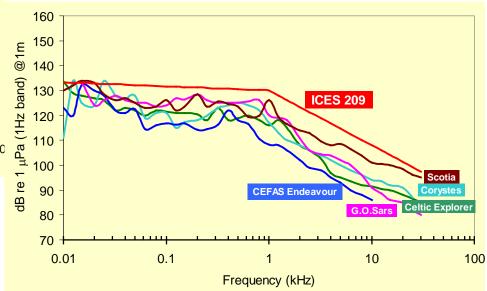
- a) lobster
- b) Atlantic salmon
- c) Atlantic cod
- d) soldier fish
- e) bottle-nose dolphin


MacLennan & Simmonds 1992

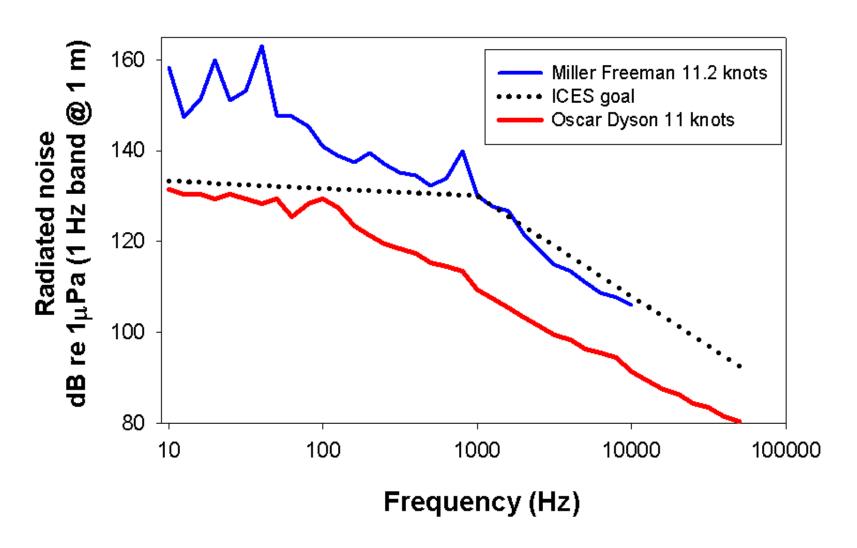
Killer Whale Hearing Thresholds


ABR = Auditory Brainstem Response

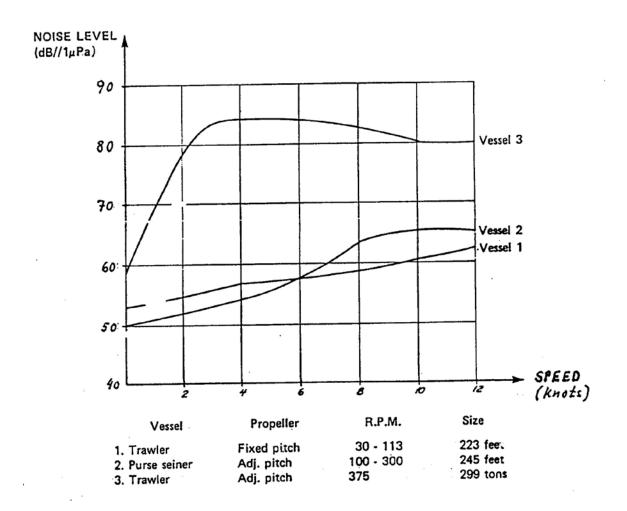
Steller Sea Lion Hearing


Vessel Noise: ICES 209

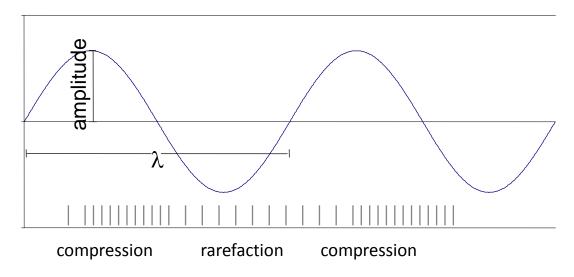
'Noisy' Research Vessels



plots courtesy of R. Mitson


'Quiet' Research Vessels

NOAA Vessels



Vessel Noise \alpha Vessel Speed

Sound Propagation

Longitudinal Compression Wave

$$\lambda$$
 = wavelength, units m

$$\lambda = c/f$$
 where: c = speed of sound (ms⁻¹) f = frequency (cycles s⁻¹, Hz)

Speed of Sound

Speed of sound (c) = f (temperature (T), salinity (S), depth/pressure (z/ρ)), units ms⁻¹

UNESCO: Chen and Millero (1977)

$$c(S,t,P) = C_W(t,P) + A(t,P)S + B(t,P)S^{3/2}$$

$$+D(t,P)S^2$$

From Wong and Zhu 1995

where

$$C_{W}(t,P) = (C_{00} + C_{01}t + C_{02}t^{2} + C_{03}t^{3} + C_{04}t^{4} + C_{05}t^{5})$$

$$+ (C_{10} + C_{11}t + C_{12}t^{2} + C_{13}t^{3} + C_{14}t^{4})P$$

$$+ (C_{20} + C_{21}t + C_{22}t^{2} + C_{23}t^{3} + C_{24}t^{4})P^{2}$$

$$+ (C_{30} + C_{31}t + C_{32}t^{2})P^{3},$$

$$\begin{split} A(t,P) &= (A_{00} + A_{01}t + A_{02}t^2 + A_{03}t^3 + A_{04}t^4) \\ &+ (A_{10} + A_{11}t + A_{12}t^2 + A_{13}t^3 + A_{14}t^4)P \\ &+ (A_{20} + A_{21}t + A_{22}t^2 + A_{23}t^3)P^2 \\ &+ (A_{30} + A_{31}t + A_{32}t^2)P^3, \end{split}$$

$$D(t,P) = D_{00} + D_{10}P.$$

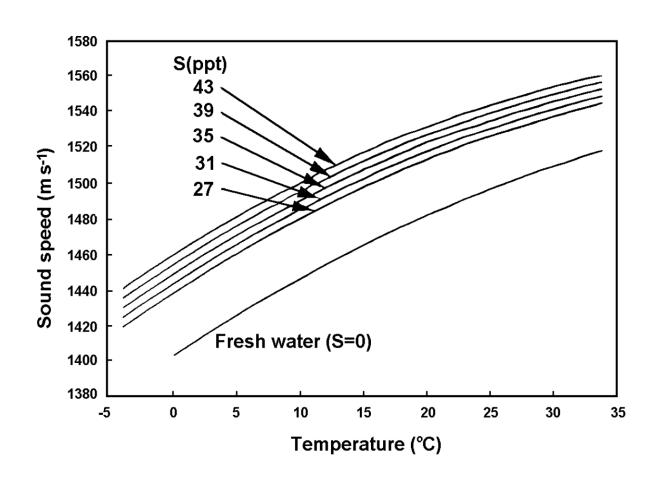

 $B(t,P)=B_{00}+B_{01}t+(B_{10}+B_{11}t)P$

TABLE I. Numerical values of the t_{90} coefficients for the UN equation.

Coefficients	Numerical values for Eq. (1)	Coefficients	Numerical values for Eq. (1)
C ₀₀	1402.388	A 02	7.166E-5
C_{01}	5.03830	A_{03}	2.008E-6
C_{02}	-5.81090E-2	A_{04}	-3.21E - 8
C_{03}	3.3432E-4	A_{10}	9.4742E-5
C_{04}	-1.47797E-6	A_{11}	-1.2583E-5
C_{05}	3.1419E - 9	A_{12}	-6.4928E - 8
C_{10}	0.153563	A 13	1.0515E - 8
C_{11}	6.8999E-4	A_{14}	-2.0142E-10
C_{12}	-8.1829E-6	A_{20}	-3.9064E-7
C_{13}	1.3632E - 7	A_{21}	9.1061E - 9
C 14	-6.1260E-10	A 22	-1.6009E-10
C_{20}	3.1260E-5	A 23	7.994E - 12
C_{21}	-1.7111E-6	A_{30}	1.100E - 10
C_{22}	2.5986E - 8	A ₃₁	6.651E - 12
C 23	-2.5353E-10	A 32	-3.391E-13
C24	1.0415E - 12	\boldsymbol{B}_{00}	-1.922E-2
C_{30}	-9.7729E-9	B_{01}	-4.42E-5
C_{31}	3.8513E - 10	B_{10}	7.3637E - 5
C_{32}	-2.3654E-12	B_{11}	1.7950E-7
A_{00}	1.389	D_{00}	1.727E - 3
A ₀₁	-1.262E-2	D ₁₀	-7.9836E-6

Affects of Temperature and Salinity

Freshwater $^{\sim}$ 1500 ms⁻¹ Salt water $^{\sim}$ 1460 – 1550 ms⁻¹ Air $^{\sim}$ 330 ms⁻¹

Effect of T > S

Mackenzie 1981

Target Resolution and Travel

Target Resolution:

f (target distance (Δr), speed of sound (c), pulse duration (τ))

$$\Delta r = c \ \tau/2$$
 * independent of frequency

Acoustic Pulse Travel Time:

time to echo =
$$2r/c$$

where r = range (m)

Frequency, Wavelength & Wavenumber

Frequency (f) = λ per unit time, units cycles s⁻¹ (Hertz)

$$f = c/\lambda \text{ (ms-1/m)}$$

Wavelength (I)

$$\lambda = c/f (ms^{-1}/s^{-1})$$

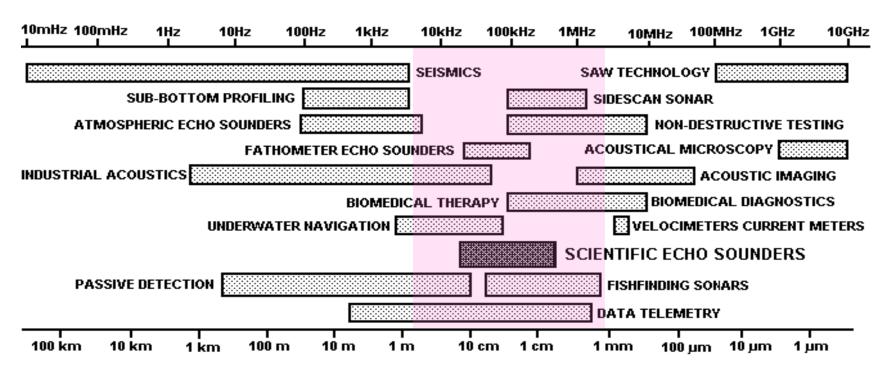
Wave number (k)

$$k = 2\pi/\lambda$$
 (rad m⁻¹)

Frequency and Period

Frequency (f) = λ per unit time, units cycles s⁻¹ (Hertz)

$$f = c/\lambda$$


Period (τ)= time for one cycle, units seconds

$$\tau = 1/f$$

in active acoustics this is the pulse duration, pulse length, or pulse width

Frequency Ranges of Acoustic Sensors

FREQUENCY

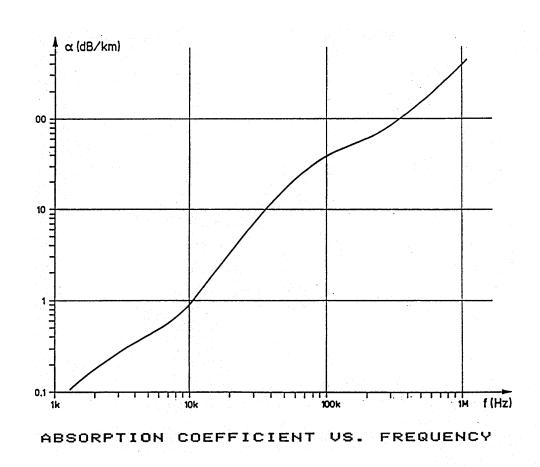
ACOUSTICAL WAVELENGTH IN WATER

Transmission Losses

Geometric Spreading

- pressure decreases as the 1/distance from source
- spherical spreading from a point source (e.g. transducer)
- non-spherical or directed spreading (e.g. fish)
- 2-way spreading increases as range²
- independent of frequency

 $\Delta I \alpha 1/r^2$


Transmission Losses

Absorption

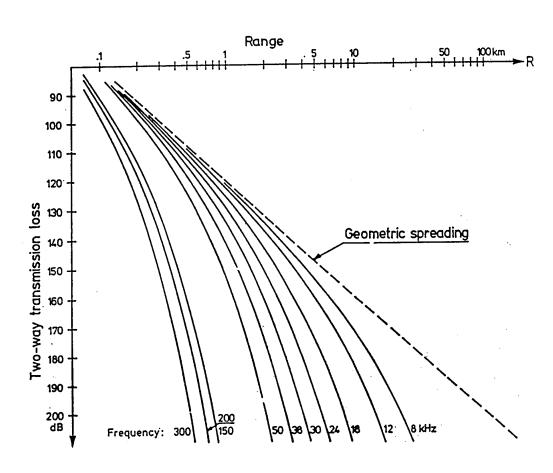
- attenuation of pressure due to friction (α , units nepers/m or dB/m), temperature, salinity, and molecular relaxation
- proportional to range (r)
- dependent on frequency
- in FW below 200 kHz, relaxation does not occur

one way: α r

two way: $2 \alpha r$

Which Loss is Greater?

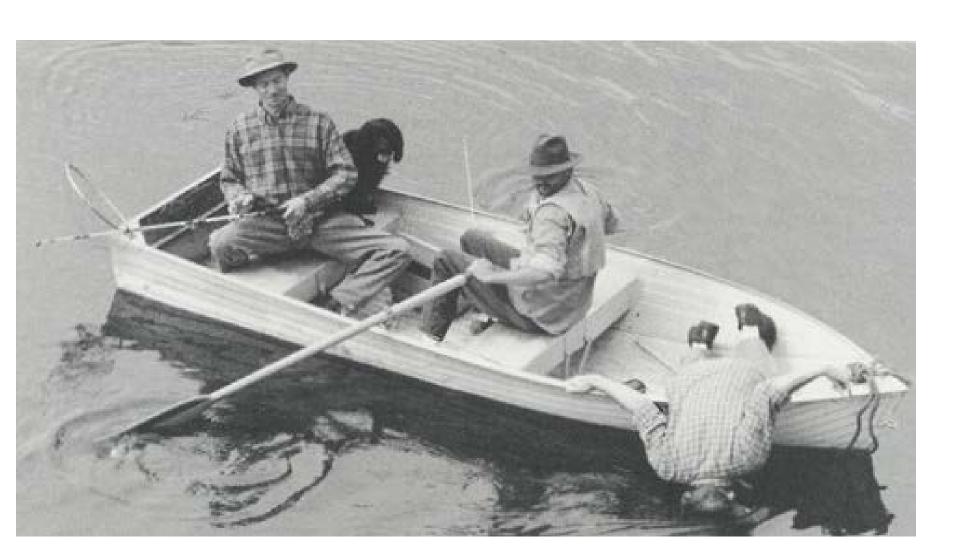
Absorption


Spreading

Frequency	Loss Rate	
1 kHz	0.05 dB/km	
10 kHz	0.5 dB/km	
100 kHz	20 dB/km	
1 MHz	300 dB/km	

~ 60 dB at 1 km

Spreading loss > Absorption loss at frequencies < 100's kHz


Total Transmission Loss

1 way: 20 log(r) + α r

2 way: 40 $\log(r) + 2\alpha r$

Why Not Use Light?

Sound Level

Sound Level = Sound Pressure Level - Transmission Loss

Sound Pressure Level = initial intensity (a.k.a. Source Level)