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Acoustic-trawl surveys are an important tool for marine stock management and environmental monitoring of marine life. Correctly assigning the
acoustic signal to species or species groups is a challenge, and recently trawl camera systems have been developed to support interpretation of acous-
tic data. Examining images from known positions in the trawl track provides high resolution ground truth for the presence of species. Here, we de-
velop and deploy a deep learning neural network to automate the classification of species present in images from the Deep Vision trawl camera
system. To remedy the scarcity of training data, we developed a novel training regime based on realistic simulation of Deep Vision images. We
achieved a classification accuracy of 94% for blue whiting, Atlantic herring, and Atlantic mackerel, showing that automatic species classification is a
viable and efficient approach, and further that using synthetic data can effectively mitigate the all too common lack of training data.
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Introduction
Sustainable exploitation of marine natural resources requires effec-

tive management based upon ongoing monitoring of the marine en-

vironment. Acoustic-trawl surveys (MacLennan and Simmonds,

2005) are one of the most important tools for assessing fish abun-

dance. These are typically used for pelagic stocks, providing impor-

tant input to the fisheries assessment models. When using calibrated

echo sounders, fish density is related to backscattered energy (Foote,

1983) through the target strength (Foote, 1987). As target strength

varies by species, correctly identifying the species detected acousti-

cally is critical to correctly estimating fish density.

Acoustic-trawl surveys typically use trawl sampling to identify

the species or species groups present. Trawl sampling only produ-

ces an aggregate collection of fish along the trawl path, and if dif-

ferent fish species are collected, assigning each species to specific

locations can be challenging. Using camera equipment in the

trawl is one way to increase the resolution along the trawl path.

The Deep Vision (Scantrol Deep Vision AS, Bergen, Norway) sys-

tem (Rosen and Holst, 2013) (Figure 1) funnels the trawl catch

past a high-resolution stereoscopic camera chamber, before it is

collected in the codend. Image pairs are taken with a fixed fre-

quency of 5 or 10 frames per second, resulting in millions of

images from a typical acoustic-trawl survey. Classification is chal-

lenging due to partial visible fish, fish at different orientations

and shapes, and similarities between the species in terms of shape

size and colouring. Each image is accompanied by information

about GPS position, time, and depth.

Machine learning and computer vision techniques can be used

to automate image processing, and tailored image recognition

techniques have traditionally been developed to solve specific

problems (LeCun et al., 2015, and references therein). This is also

the case for fish images, where specific techniques have been de-

veloped for species identification (White et al., 2006) and fish seg-

mentation (Chuang et al., 2015), among others.
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Developing tailored solutions to specific problems is costly,

but a promising technology has recently emerged in the form of

deep learning, where deep convolutional neural networks learn to

analyse the raw data directly (Schmidhuber, 2015). This tech-

nique has been particularly successful applied to image classifica-

tion (Krizhevsky et al., 2012; He et al., 2016), but depends on

having large sets of previously labelled data available.

Access to suitable training data is often limited, and several

methods exist to mitigate this problem. Systems trained on a gen-

eral or related problem can be adapted to the problem at hand by

retraining parts (usually the final layer of a neural network), a

process referred to as transfer learning (Sharif Razavian et al.,

2014; Yosinski et al., 2014). Pre-trained networks have previously

been used successfully to recognize fish species in images (Salman

et al., 2016; Siddiqui et al., 2018).

Another commonly used option is to artificially expand the train-

ing set by applying transformations that preserve classes. This is re-

ferred to as augmentation. For instance, images can be randomly

cropped, mirrored (Krizhevsky et al., 2012), scaled, and rotated

(Wan et al., 2013). Other data types may require different transfor-

mations, the important property is that transformations do not affect

the target variable. In recent years, more complex forms of data aug-

mentation have emerged (Taylor and Nitschke, 2017), for example,

using domain-specific synthesization or using Generative Adversarial

Networks (GANs) (Goodfellow et al., 2014). Here we implement a

simulator that generates synthetic images to serve as training data.

The images are composed randomly from components of real

images, and the process is fast and straightforward.

Objectives
Our primary objective is to develop a system for automatic fish

species identification to support acoustic-trawl surveys, using a

state-of-the-art convolutional neural network for image classifica-

tion. We target the long-running series of surveys of Norwegian

spring spawning herring (Clupea harengus L.), the International

Ecosystem Survey in the Nordic Seas (IESNS), which provides

one of the main data series for the assessment of Norwegian

Spring Spawning Herring. The survey covers a larger area of the

Norwegian Sea, and is coordinated through the International

Pelagic survey working group at the International Council for the

Exploration of the Sea (ICES) with participation from Norway,

Faroes, Iceland, Russia, and Denmark. Commonly encountered

pelagic species in the area are herring, blue whiting

(Micromesistius poutassou) and mackerel (Scombrus scombrus),

and the difficulty of acoustically separating these species pose a

central challenge.

A secondary objective is to explore the potential of the use of

synthetic data as a way to generate the large datasets necessary for

training deep learning classifiers. The lack of sufficient amounts

of labelled training data limits the application of machine learn-

ing in many domains, and the process of labelling by a human ex-

pert is often labour intensive. Effective simulation methods to

generate synthetic data thus opens up new fields to analysis by

deep learning methods.

Material and methods
Data collection
In May 2017, a separate voyage was carried out back-to-back with

the IESNS survey. The objective was to support the main survey

by investigating potential sources of biases in the indices of abun-

dance that are used in the assessment. The survey used the com-

bined pelagic trawler and purse seiner FV Vendla, and followed

the same transect as RV GO Sars from the Norwegian coast to the

coast of Iceland, at 65.83 degrees north (Figure 1). Herring was

found from 0 degrees longitude and west, with the highest

Figure 1. Transect at 65.83 degrees north latitude (left). Underwater image of Deep Vision system placed between trawl and codend (upper
right). Trawl profile and images integrated with echosounder data in LSSS (lower right). The red line indicates the path of the trawl through
the water column. Deep Vision images at bottom are from the positions indicated by the arrows and orange boxes along the trawl path.
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densities in the Icelandic zone, between 9 and 12 degrees west

longitude. Mackerel was found east of 6 degrees west longitude,

generally in the surface layers. Blue whiting was encountered at

depth in trawling stations from the easternmost trawling position

(1.4 degrees east longitude) to 8 degrees west longitude.

Trawl sampling was done using a Multpelt 832 pelagic trawl

with 50 mm codend. In order to limit catches, a longitudinal split

was put in the top of the codend extending 150–230 cm forward

of the codline. The trawl was spread by 7 m Egersund SeaFlex

trawl doors, with the upper hatches opened 50% and the lower

hatches opened 12.5–25%. About 750 kg weights were fitted to

the lower wing tips. Trawling speed was 3.5–5.0 knots, with lower

speeds necessary when trawling at depth and highest speeds when

trawling at the surface. The Deep Vision system was mounted be-

tween the trawl and codend (Figure 1). The Deep Vision images

are read directly into the Large Scale Survey System (LSSS) soft-

ware package used to discriminate acoustic data and the trawl’s

path through the water column is indicated on the echogram

based upon depth and time stamp. LSSS corrects for the offset in

distance between the vessel and trawl based upon the length of

trawling warp and bridles.

During the survey, a total of 20 trawl stations were conducted

using the Deep Vision system (Table 1). Thirteen of the hauls

were long tows conducted with an open codend (average towing

time 2 h 46 min), while seven were conducted with a closed

codend but the split described above (average towing time with

closed codend: 52 min). Images were collected for the entire time

the Deep Vision system was in the water, a total of 1 216 914 ste-

reo image pairs from 63 h 19 min of data collection. At one sta-

tion, images were collected at 10 frames per second, but the

system proved unstable at this frame rate (unable to maintain a

constant frame rate and synchronization with the strobe, see be-

low, was sometimes lost). The camera was stable at the frame rate

of five images per second used at all other stations.

Dataset and image classification
From the images obtained from the survey, around a thousand

images per species were manually curated such that only a single

species (although often multiple individuals) were present. For

acoustic surveys, we are interested in identifying the dominant

species, and the pelagic fish we study here typically occur in

monospecific schools. Splitting our dataset into a training, valida-

tion, and test set leaves us with a few hundred images per species,

which may not be sufficient to train a deep neural network to op-

timal performance.

Generating synthetic images for training
In order to quickly provide a training set, we developed a system

to generate N artificial images that are sufficiently similar to ac-

tual Deep Vision images to serve as training data. With the

method described below, this system allows us to generate thou-

sands of images using a small number of images of individual fish

(Figure 2).

From the raw data, individual fish were selected and extracted

manually using the Gimp lasso tool, resulting in a set of C

cropped images of fish with a variety of orientations and sizes

from each of the three species. Source images were selected where

fish were fully visible (not occluded). In addition, we selected a

set of 16 empty images (i.e. images with no fish or other objects)

to serve as background. To generate an artificial image for a given

species, the following procedure was used:

(1) A background image was randomly selected.

(2) One to six fish images were randomly selected from the

cropped images for each species.

(3) Each cropped fish image was subjected to different transforma-

tions, e.g. random flipping, rotation and resizing (see Table 2).

(4) The fish images were pasted at random positions in size or-

der, to emulate an approximate depth scaling.

Random positions were selected so that at least one-third of each

fish was visible from the edges. To match the physical properties

of the Deep Vision system, no more than one-third of a fish was

allowed to extend below the bottom edge of the image, and fish

were not allowed to extend above the top edge at all.

These parameters were chosen so that the images generated would

bear the closest possible resemblance to the Deep Vision data.

Generating one image took slightly less than 0.1 s. While the number

of possible images is unlimited, generating and training on larger

datasets takes more computational time. Since these images are gen-

erated from a fixed number of cropped images, one might expect

diminishing returns beyond a certain number of generated images.

Extracting cropped images of individual fish also requires a certain

amount of manual effort. In order to explore how performance

varies with the number of cropped fish images (C) and number of

synthetic training images per species (N), we validated the network

for different combinations of C and N.

The convolutional neural network classifier
We used the TensorFlow deep learning framework (Abadi et al.,

2015) with the Keras (Chollet and others, 2015) library. A Keras

Table 1. Trawling data.

Longitude Time of day Depth Duration Image Species

(deg)
(hh: mm

UTC)
(headrope,

m) (hh: mm)
pairs

(count)

�11.6595 21: 13 0–300 03: 47 81 265 h
�11.2836 08: 41 0–260 00: 49 38 235 h
�10.5477 08: 52 0–200 00: 27 31 820 h
�10.4222 17: 58 0–160 00: 27 29 085 h
�10.2725 11: 30 0–280 03: 05 155 854a h
�9.7074 08: 43 0–290 04: 04 88 645 h
�9.4059 14: 55 190–340 00: 35 27 065 h
�8.7934 10: 19 0–320 02: 09 56 410 h
�8.7926 19: 51 0–285 04: 13 90 970 h
�7.9564 15: 47 0–285 02: 39 62 980 h, bw
�6.7382 22: 12 0–200 01: 34 45 135 h, bw
�5.9108 09: 52 0–280 03: 48 87 550 h, bw, m
�4.6890 12: 15 0–350 03: 59 91 280 h, bw
�3.4793 06: 17 0–260 01: 36 42 630 h, bw, m
�2.6615 16: 58 0–290 03: 49 80 470 h, bw, m
�2.1604 01: 01 0–200 01: 03 32 705 h, bw, m
�0.8008 17: 35 0–370 03: 36 76 805 h, bw, m
�0.0419 23: 50 0-160 00: 50 27 315 h, bw, m
1.1279 19: 16 0–30 00: 38 29 240 m
1.4376 13: 43 200–360 00: 53 41 455 bw, m

Note: h, herring; m, mackerel; and bw, blue whiting.
aDeep Vision images were collected at 10 frames per second at one station, 5
frames per second at all other stations.
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implementation of a state-of-the-art convolutional neural net-

work model Inception 3 (Szegedy et al., 2016) was used, with a

classifier pretrained on the ImageNet classification dataset. To re-

duce the number of parameters and prevent overfitting, a global

average pooling layer (Lin et al., 2013) and a dropout layer

(Srivastava et al., 2014) were added. The last Inception layer is

fully connected and consists of 1000 nodes, each representing a

class in the ImageNet dataset. The outputs are normalized so that

they sum to one using a softmax normalizer. This was replaced

with a layer having three outputs, corresponding to the three fish

species in our data. For training, we used cross-entropy loss as

our objective, and minimized it using the RMSprop optimizer

with a learning rate of 0.0001.

The whole network was finetuned on a new dataset consisting

solely of images from one of the training sets described below,

resized to (299, 299) for 10 epochs (complete iterations through

the training data). The network was finetuned again on training

images resized to (512, 512) for 50 epochs with early stopping,

with a patience of 15 epochs, i.e. training was stopped either after

the full 50 epochs or after 15 consecutive epochs (the patience)

resulting in no improvement. The whole procedure including

testing took approximately 45 min per dataset on average on an

NVIDIA GeForce GTX 1080 Ti with Cuda 8.0 and cudnn 5.1.

Training datasets
We used 133 different training sets based on different configura-

tions of C and N, where C varied between 10 and 70. For each C,

10 000 synthetic images per species were generated and we se-

lected fractions of this dataset, such that the number of training

images (N) varied between 100 and 1000 in steps of 100 and from

2000 to 10 000 in steps of 1000, resulting in 19*7 training sets.

In order to compare training on synthetic data with training

on real images, we selected 10–70 images of each species from the

available dataset and then trained the convolutional neural net-

work with these images as training dataset. Following standard

practice, we applied to the final images, both real and synthetic, a

set of augmentation techniques that included rotation,

translation, shearing, flipping, and zooming (see Table 3). To as-

sess the importance of these transformations, we also trained the

network on synthetic data without data augmentation.

Validation and testing
For validation and testing, we used a balanced dataset (with the

same number of images for each fish species) consisting of a total

of 3000 images obtained from the Deep Vision survey. To avoid

overfitting on the training data, 20% of this dataset was kept as

validation data to monitor the training process after each epoch,

with images previously unseen by the network. The trained net-

work for a given epoch was saved whenever validation loss de-

creased. After training, we tested our network on a test dataset

consisting of 2400 real images, 800 from each species, using the

saved model corresponding to the minimum validation loss. For

each image, the predicted fish species is the class with the maxi-

mum softmax output.

Results
We conducted a series of experiments where different number of

training images (N) were generated from varying numbers of in-

dividual cropped out fish images (C). The training images were

used to train the convolutional neural network. Each network

thus trained was tested on the test dataset of 2400 images, and the

resulting classification accuracy was recorded (Figure 3). Test

Figure 2. To generate images that realistically resemble Deep Vision photographs, instances of fish are cropped from real images and pasted
onto empty background images at random positions, with random orientations and sizes. The number of fish per image varies between one
and six. In this example, three individual mackerel images are extracted from Deep Vision images (C¼ 3) and used to generate four synthetic
images (N¼ 4).

Table 2. Table of transformations applied to the cropped images of
individual fish used to generate the synthetic images.

Transformation method Range

Prob. of left-right flip 1/3
Prob. of top-bottom flip 1/10
Size according to species 33/35 (h), 35/35 (m), 27/35 (bw)
Scale Between 50/55 and 50/15
Rotation Gaussian, mean ¼ 0, SD ¼ 8

Note: h, herring; m, mackerel; and bw, blue whiting.
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accuracy is expressed here as the percentage of predictions that

match the ground truth label.

The best accuracy (94.1%) on the test dataset was achieved

when training on a dataset consisting of 15 000 images (5000 per

species), based on 70 cropped images. Because some weights are

randomly initialized in the network, running an experiment sev-

eral times with otherwise same parameters can give slightly differ-

ent results. To test how choices of C and N affect accuracy, we

fitted a multiple linear regression model to logit transformed ob-

served accuracies (R2¼ 0.57, F(2, 130) ¼ 87, p< 0.1). It was found

that the number of individual fish images (C) significantly pre-

dicted the accuracies (b ¼ 0.74, p < 0.01). The number of images

(N) also came out as a significant, albeit smaller, effect (b ¼ 0:16,

p < 0.01). It is worth noting that when we ran the same regres-

sion on the accuracies from networks that were trained without

data augmentation on the synthetic images, the effect of N on the

accuracy doubled (see Supplementary Figure S1).

In order to provide a baseline for comparing the efficacy of

training on synthetic data, we also trained the classifier on the

same number of real images, which were subjected to the same

data augmentation as the synthetic data (Table 4). The test accu-

racy for classifiers trained on real images varied from 50.8% to

71.1%.

Where the classifier fails
With the most accurate classifier (C¼ 70 and N¼ 5000), 141 out

of 2400 images (5.9% of the test set) are misclassified (Table 5).

Of the three species, the most commonly misclassified species is

the mackerel in this instance. Note that this does not necessarily

constitute a trend across classifiers. The next best classifier, for in-

stance, overpredicts blue whiting and misclassifies herring most

frequently.

To better understand the potential sources of error, the mis-

classified images were manually inspected and categorized as

shown in Figure 4. More than 50% of the inaccurately identified

fish images contained only parts of the fish. The rest of the mis-

classified images contained for the most part, either multiple fish

or fish orientated such that features important for identification

were obscured.

The classifier outputs its predictions in the form of a softmax

output, assigning a number to each class and scaling the output

so that the final prediction scores sum to one. To determine the

classification, the class with the highest prediction score is chosen,

but the prediction scores can also be interpreted as the classifier’s

confidence in the classification. For three categories, the maxi-

mum prediction score is between 0.33 (representing approxi-

mately equal likelihood of the three categories) and 1.0

(representing complete confidence in the classification). The dis-

tribution of prediction scores is shown in Figure 5 (left), along

with the fraction of misclassified images for each prediction score

category. As expected, the fraction of misclassified images

decreases with increasing confidence threshold. By setting a mini-

mum threshold we can substantially improve the accuracy of the

remaining predictions, but at the cost of leaving some images un-

classified (Figure 5, right).

Discussion
We have shown that a standard convolutional neural network is

able to correctly identify fish species with up to 94% accuracy on

a dataset of images collected from a standard fisheries survey us-

ing a commercially available camera system. Misclassified images

are mainly caused by fish seen only partially or in non-ideal ori-

entations. Nevertheless, the system successfully identifies a large

number of images where fish are only partially seen, or where fish

are partially occluded. These situations often confound methods

that rely on segmentation of fish by identifying the outline

(White et al., 2006; Chuang et al., 2015).

Table 3. Table of augmentation techniques.

Augmentation method Range

Rotation range 40
Width shift range 0.2
Height shift range 0.2
Rescale 1/255
Zoom range 0.2
Horizontal flip True

Figure 3. Test accuracy as a function of C and N after training on synthetic images.

Table 4. Test accuracy obtained on the 2400 test images when the
network was trained on real images vs. test accuracies for the best
combination of N for synthetic images.

Number of images used 10 20 30 40 50 60 70

Real images 50.8 53.0 67.1 64.4 63.3 71.1 67.2
Synthetic data (best) 89.2 89.4 91.5 92.2 92.4 93.6 94.1

Notes: Each column indicates the number of real labelled images or cropped
single images used. The first row shows the test accuracy after using 10–70
real images for training, and the second row shows the best test results across
N when using 10–70 individual fish crops to generate the training images.
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The strength of neural networks is that general architectures

and programming libraries are readily available, and that they are

flexible enough to be applied to new problems with only small

modifications. Here we have used a pre-trained neural network as

a starting point and retrained it on our own data in a process

called transfer learning. The pre-trained network is able to iden-

tify low-level features useful for image classification, and we were

able to quickly and effectively adapt it from its original purpose

of differentiating between the 1000 object classes in the ImageNet

dataset to identifying fish species.

Importantly, by using synthetic images we were able to achieve

a very high accuracy with a surprisingly small number of labelled

images. This allows us to easily generate thousands of realistic

images with higher variation than with traditional augmentation

methods. The uniformity of the Deep Vision images, with their

regular background and lighting, makes them a good fit for this

approach. Training with synthetic data have previously been used

successfully in other contexts. For instance, Jaderberg et al.

(2016) generated synthetic images to train a system to retrieve

textual information. Similarly, Ødegaard et al. (2016) used

Table 5. Confusion matrix obtained using best classifier, with C¼ 70
and N¼ 5000 with data augmentation.

Predicted Blue whiting Herring Mackerel Total, predicted

Actual
Blue whiting 771 16 11 798
Herring 29 765 66 860
Mackerel 0 19 723 742
Total, actual 800 800 800 2400

Note: The columns show the predictions for each species, e.g. out of 800 blue
whiting, 771 are correctly classified whereas 29 are misclassified as herring.

Figure 4. Characteristics of images where the convolutional neural network technique assigned incorrect species. Values in parentheses
indicate total number of images in which fish were misidentified (out of 800 images per species). Images below each category are examples
where species was misidentified.

Figure 5. Maximum softmax output as an indicator of accuracy. Left: Distribution of test images as a function of prediction score (maximum
softmax output). The fraction of images misclassified for different softmax outputs are shown in orange. Right: Test accuracy as function of
the percentage of data retained, based on their prediction scores (images with the lowest prediction scores are discarded). Accuracy increases
when the images with the lowest prediction scores are removed from the dataset.
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synthetic radar signatures to train a convolutional network to rec-

ognize ships. For many important problems there is a lack of ade-

quate amounts of labelled data for training, and generating

synthetic data is likely to be a central technique to mitigate this. It

is important to ensure that the images generated are tailored to

the problem at hand and to avoid introducing bias in the selec-

tion process.

Acoustic-trawl surveys provide indices of abundance to stock

assessment models, and correctly allocating acoustic energy to

species is a key challenge. Typically, trawl catches are used to aid

the process but lacks spatial resolution. Adding a camera to the

trawl provides necessary resolution along the trawl path (Rosen

and Holst, 2013), and, in cases where echogram regions (c.f.

Figure 1) are classified to single species class, predicting the major

class along the trawl track is sufficient. This is the rationale for

classifying the images rather than individual fish within the

images. This also allows us to filter out images with low confi-

dence classification, and interpolating between high quality

images is likely to result in improved accuracy and more reliable

region classification.

Trawl-camera systems allow trawling with an open codend, re-

ducing the impact on the environment as well as on fish welfare.

This is relevant in cases where physical samples are not needed,

and when the current practice is too selective or destructive such

that, e.g. small objects, are not retained in the catch.

Several extensions of the work are planned. The three species

used here are central to the herring assessments, but future devel-

opment will extend this to differentiate more species. For applica-

tions where we are interested in the mix of species within an

image, typically for demersal trawl surveys, the one-species per

image approach may not be sufficient. Alternatively, the network

could be trained to predict mixed categories, or extended to clas-

sify each individual fish. The latter would require segmentation of

individual fish and could be achieved by deep learning segmenta-

tion techniques (Girshick et al., 2014; Long et al., 2015; Redmon

et al., 2016; Badrinarayanan et al., 2017). Segmentation also

allows us to efficiently use the stereoscopic information in the

Deep Vision system, and next steps include using stereoscopic in-

formation to determine fish size and condition.

We are now proceeding to integrate the Deep Vision into our

processing pipelines, using the IESSNS survey as a use case. This

includes software that can be deployed operationally to provide

predictions, adjustments to the software that is used to classify

the acoustics (LSSS), and hardware adjustments to ensure proper

handling of data. It is only after these steps have been taken that

the full value of the development will be realized.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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