SILVICULTURE OF PURE, SINGLE-COHORT STANDS

PURE SINGLE-COHORT STANDS

- Naturally occur after severe, stand replacing events
 - Persist naturally where conditions are intolerable (hot/dry, cold/wet) for other species to claim growing space
- Artificial occurrence through clear-cutting
 - Complete removal of previous stand (full growing space available)
 - No restrictions for future treatments
 - Choose over partial-cutting when residual trees won't:
 - Be a good seed source
 - Protect new crop
 - Provide wildlife habitat
 - Increase in value
 - Provide amenity values
- Least complicated system

PURE SINGLE-COHORT STANDS


Two chief silvicultural systems

High forest

Coppice (low forest)

PURE SINGLE-COHORT STANDS

Artificial occurrence through clear-cutting

REGENERATION - Seeding

- Regeneration from seeding is possible; typically used only under special circumstances
- Associated with extensive, low-investment silviculture
- Clear-cutting with seeding from adjacent stands:
 - Agencies of dispersal (wind, water, birds and wildlife) and seed adaptations are very important.
 - Size and shape of the clearings (long and narrow)
 - Direction of prevailing winds during dispersal season
 - (1 6 times the height of source trees)

REGENERATION - Seeding

Clear-cutting with seeding from adjacent stands:

REGENERATION - Seeding (cont'd)

- Clear-cutting with regen from seed on site:
 - No restrictions by seed-dispersal distances, reliance on seed stored on the trees or soil.
 - > The only useful seed is that produced in the current year (most species).
 - Long-term storage of seeds is characteristic of undesirable species
 - Exceptions
 - Atlantic white cedar remains viable many years in duff
 - Yellow poplar requires high temps and exposure to light
 - Ash species requires 1 yr. in forest floor to stratify

REGENERATION - Planting

- :-) Uniform and fuller stocking than other methods
- > :-) Faster establishment
- :-) Excellent control of:
 - Density
 - Spatial arrangements
 - Species
- :-(Stands may become crowded with individuals of equal vigor/size/condition
 - "stagnation"

- Applications of Pure-stand Silviculture
 - West Coast Douglas-fir region:
 - Douglas-fir typically regenerates naturally, densely after stand replacing fires caused by lightning strikes (seed source = trees in swales, other unburned areas)
 - Douglas-fir dominates for 100s of years
 - "Selective" logging was attempted; size ≠ age
 - If cuttings are <100 acres, wind born seeds come in
 - Direct seeding attempted after broadcast burn
 - Conservation movement changed attitudes about regeneration – planting of seedlings now standard

> Applications: West coast Douglas-fir

- Applications of Pure-stand Silviculture
 - Southern region:
 - Silviculture for many southern pines evolved along similar lines as Douglas-fir
 - Partial cutting first attempted (seed-tree method)
 - Direct aerial seeding was then attempted
 - Planting seedlings is regeneration method of choice
 - Works with loblolly (Pinus taeda), short-leaf (P. echinata), slash pines (P. elliottii), and long-leaf (P. palustris)

Southern Region: Planted Loblolly pine

COPPICED SINGLE-COHORT PURE STANDS

- Silviculture that depends on vegetative sprouting or layered branches is remarkably simple & successful
 - Most common and ancient form of deliberate forest regeneration
 - All standing trees are harvested (cut) at the end of each rotation; perfectly even-aged stand sprouts up nearly immediately
 - Most vigorous sprouts occur when trees are cut in dormant season

COPPICING

- Reproducing vegetatively has great survival value for many species of perennial plants
 - Frequent mode of regen for most shrubs, grasses, and many herbs w/ perennial roots & annual shoots
 - Sexual (from seed) reproduction maintains capacity for genetic change & adaptation
 - Angiosperms possess ability to sprout vegetatively as an added mode of regen
 - Conifers cannot reproduce this way, with a few exceptions, though it happens infrequently

COPPICING

- Reproducing vegetatively is a natural adaptation to hot fires that kill above-ground parts too frequently for seed-bearing aged individuals to develop (with any regularity)
- Growth of young sprouts is much more rapid than seedlings of comparable age; extensive root system already exists
- Full advantage is gained by cutting all individuals of the species to be regenerated in a single operation

- Stump-sprouts
 - Arise from dormant buds at root collar
 - Develop from lateral buds present on leading shoot of seedling; grew outward with cambium to maintain position just under bark
 - Remain connected to pith; if severed, cannot become new shoot
 - Bark may become too thick for it to develop
 - Stump-sprouting capacity decreases with age
 - Usually cluster in rings around the stump;
 competition is fierce

- Stump-sprouts
 - ✓ Sweet chestnut, Surrey

- Stump-sprouts (cont'd)
 - Risk of heart-rot from old stump varies with species
 - Not a problem in maples, but is in yellow-poplar
 - Not a problem for most oaks, as long as sprout originates low down on stump
 - Coast redwood stump sprouts have no problems
 - American conifers that can be usefully regenerated by stump-sprouting
 - Coast redwood
 - ✓ Bald cypress
 - Pines: pitch, pond, shortleaf

- Seedling-sprouts
 - Much the same as stump-sprouts, but come from stumps less than 2" in diameter
 - Generally means stump is mostly sapwood, callusing over quickly, reducing threat of heart-rot spread
 - Stems tend to be straighter than those sprouting from larger stumps
 - ✓ Oaks, hickories, chestnuts often rely on this as an adaptation to survive through drought, etc.; a kind of longterm advance regeneration storage – though more important for high-forest methods than coppice

- Adventitious bud-sprouts
 - Most important source of regeneration from this source is root-suckers or root-sprouts forming along roots of killed or damaged trees
 - Very common among aspen poplars
 - Common in sweet-gum, black-gum, American beech, black locust and sasafras
 - Tend to be straighter, more evenly spaced, and free of rot compared to stump-sprouts

Adventitious bud-sprouts – pollarding

STUMP-SPROUT STANDS

- Most common vegetatively regenerated stands arising from simple coppice cutting of all trees
- Rotation length is restricted due to high competition among sprout clumps (< 35 yr)</p>
 - Risk, incidence, and extent of decay spread increases with age, though varies greatly with species and climate
 - Cut low and slant stump faces to assist water run-off
 - Use saws to avoid loosening bark
 - Burn slash to kill stump sides, restricting sprouting buds to at or below ground surface

ROOT-SPROUT STANDS

- Easier than managing stump-sprouts
 - Spacing is not a problem; regen usually too abundant
 - Risk, incidence, extent & spread of heart-rot decay virtually non-existant
 - No restrictions on rotation age
- Most important species still regenerated this way are quaking and bigtooth aspens in Great Lakes Region

COPPICE METHOD

- Chief role is growing fuelwood, pulpwood, and other small tree products from angiosperms
 - Practiced for hundreds of years on the Atlantic seaboard
- Sure regeneration method for sprouting species
- Growing space
 - Soil remains completely occupied by the crop trees
 - Above ground growing space is quickly reoccupied
- Thoroughly preserves genetic make-up of trees