Reminder

Exam \#1 on Friday Jan 29
Lectures 1-6, QS 1-3
Office Hours:
Course web-site
Josh: Thur, Hitahcook 3:00-4:00 (?)
Bring a calculator
Questions/Comments/Concerns/Complaints...

Practice Question: Product Rule in Pedigrees

Example: Albinism...

$$
a=\text { no pigment }
$$

What is the probability that III-1 will show the trait?

$P(A a \times$ Aa giving $a a)=1 / 4$
$P(I I I-1$ is aa) $=2 / 3 \times 1 / 4=1 / 6$

Practice question: Sum Rule in Pedigrees

The same pedigree...

What is the probability that III-1 will be homozygous?

Need III-1 = AA or aa. Possibilities:
AA father has AA child: $1 / 3 \times 1 / 2=1 / 6$
Aa father has AA child: $2 / 3 \times 1 / 4=1 / 6$
Aa father has aa child: $2 / 3 \times 1 / 4=1 / 6$

Therefore, probability of homozygous child $=1 / 6+1 / 6+1 / 6$ $=1 / 2$

Mendel's Second Experiment

Mendel's Second Experiment

Cross two pure breeding pea plants that differ in two traits

Purpose was to determine how the inheritance of one trait influenced the transmission of the other

Offspring of these crosses are referred to as dihybrids
hybrid for two different pairs of contrasting traits

Dihybrid Cross

Smooth Yellow Wrinkled Green
 seeds seeds

Parental (P) generation

F_{1} generation

F_{2} generation

Phenotype

9 Smooth 3 Smooth 3 Wrinkled 1 Wrinkled
Yellow Green Yellow Green

Dihybrid Cross

$\begin{aligned} & \text { Parental (P) } \\ & \text { generation }\end{aligned}$

$$
\text { RRYY }
$$

F_{1} generation

Rryy Rryy

Each trait determined by a gene with two alleles

How many different types of gametes are produced?

${ }^{1 / 4} \mathbf{R Y} \boldsymbol{Y} \quad 1 / 4 \mathbf{r} \underline{\boldsymbol{Y}} \quad 1 / 4 \mathrm{R} \boldsymbol{Y}$				
1/4 $\underline{R} \mathbf{Y}$	RRYY	Rryw	RRYy	Rryy
$1 / 4 \mathrm{r} \underline{Y}$	Rryy	rry	RrıY	rrıy
1/4 Ry	RRYy	Rryy	RRyy	Rry
$1 / 4 \mathrm{ry}$	Rryy	rrıy	Rrnv	rny

Forked line trick...

Calculating probabilities without punnett squares for IA traits:

Shape Color

Chance, Meiosis, and Independent Assortment

Mendelian Genetics

Law of Random

Segregation: alleles
segregate randomly in the formation of gametes

Law of Independent
Assortment: unlinked traits are transmitted to offspring independently of one another

Gregor Mendel (1822-1884)

Evaluating the Goodness of Fit- χ^{2} Analysis

Example: Coin flipping
Coin \#1: 505 heads, 495 tails
Coin \#2: 460 heads, 540 tails

Is there something wrong with either coin? How to decide? How much deviation from the expected values do we tolerate?

Statistical question to ask: What are the chances that even a normal coin would give a result this far off from the expected result?

Evaluating the Goodness of Fit- χ^{2} Analysis

A measure of how well observed data conform to a specified, expected, or theoretical probability distribution.

315 yellow, round seed
108 green, round seed
101 yellow, wrinkled seed
32 green, wrinkled seed

$$
556 \quad 9.84: 3.15: 3.375: 1
$$

Is this really a 9:3:3:1 ratio? Is the deviation due to chance or is there something wrong with Mendel's hypotheses?
χ^{2} analysis: Test the "null" hypothesis-that the ratio of observed offspring is no different from a 9:3:3:1 ratio.

χ^{2} Analysis of Mendel's Dihybrid F2 Results

- $\chi^{2}=\sum \frac{(\text { Observed-Expected })^{2}}{\text { Expected }}$

$$
(9 / 16 \times 556) \quad \text { o } \quad \text { e }(0-e)^{2} \quad \frac{(o-e)^{2}}{e}
$$

$$
\text { round, yellow } \quad 315 \quad 313 \quad 2^{2} \quad 4 / 313=0.013
$$

$$
\begin{array}{lllll}
\text { round, green } & 108 & 104 & 4^{2} & 16 / 104=0.154
\end{array}
$$

$$
\text { wrinkled, yellow } \begin{array}{llll}
101 & 104 & 3^{2} & 9 / 104=0.087
\end{array}
$$

$$
\begin{array}{lrrrr}
\text { wrinkled, green } & 32 & 35 & 3^{2} & 9 / 35=0.257 \\
\hline 556 & & \Sigma=0.511
\end{array}
$$

Degrees of freedom (df)

The number of independently varying parameters in the experiment (number of offspring classes-1)

Why does df matter?

More independent categories, the more opportunities for chance deviation; therefore need to make greater allowance for chance deviation

Look up the \mathbf{P} value in a $\chi^{\mathbf{2}}$ table

P is the probability that the null hypothesis is true, and a deviation this large is due to chance

If $P>0.05$ then we do not reject the null hypothesis

χ^{2} Analysis of Mendel's Dihybrid F2 Results

- $\chi^{2}=\sum \frac{(\text { Observed-Expected) })^{2}}{\text { Expected }}$

$(9 / 16 \mathrm{X} 556)$	o	e	$(\mathrm{o}-\mathrm{e})^{2}$	$\frac{(\mathrm{o}-\mathrm{e})^{2}}{\mathrm{e}}$
round, yellow	315	313	2^{2}	$4 / 313=0.013$
round, green	108	104	4^{2}	$16 / 104=0.154$
wrinkled, yellow	101	104	3^{2}	$9 / 104=0.087$
wrinkled, green	32	35	3^{2}	$9 / 35=0.257$
	556			Σ

How many degrees of freedom? 3 (number of offspring classes - 1)

χ^{2} table

P	0.995	0.975	0.900	0.500	0.100	0.050	0.025	0.010	0.005
df									
1	0.000	0.000	0.016	0.455	2.706	3.841	5.024	6.635	7.879
2	0.010	0.051	0.211	1.386	4.605	5.991	7.378	9.210	10.597
3	0.072	0.216	0.58.	2.366	6.251	7.815	9.348	11.345	12.838
	0.207	0.484	1.064	3.357	7.779	9.488	11.143	13.277	14.860
	0.412	0.831	1.610	4.351	9.236	11.070	12.832	15.086	16.750
	0.676	1.237	2.204	5.348	10.645	12.592	14.449	16.912	18.548
Find closest χ^{2} value P va									

Find appropriate df row

What does this \mathbf{P} value mean?

Would expect a deviation from the hypothesis of this magnitude (from chance alone) more than $>90 \%$

Therefore, do not reject the null hypothesis.

Linkage and Genetic Maps

- Genetic linkage
- Molecular markers

SNPs

VNTRs
RFLPs

A Quiz Section Digression...

Sex Determination

In lots of animals (fruit flies, mammals...)
XX = female
XY = male

sex
chromosomes

A Quiz Section Digression...

X-linked recessive traits...

- more affected men than women (rare traits... almost exclusively affect men)
- sons of affected women will be affected

X-linked dominant traits...

- affected women: each child has 50% chance of being affected
- affected man: will transmit trait to all his daughters and none of his sons

A Quiz Section Digression...

Is this pedigree consistent with X-linked inheritance?
i.e.,

Can you rule out X -linked recessive inheritance? If so, why?

Can you rule out X -linked dominant inheritance? If so, why?

What Phenotypic Ratio Do We See in a Test Cross?

Why?

Because...

Testing the Hypothesis of Independent Assortment

> purple eyes vestigial wings pr pr vg vg
wild type pheno

$$
\mathrm{pr}^{+} \mathrm{pr} \mathrm{vg}^{+} \mathrm{vg}
$$

testcross parent genotype?

1 ratio
For I.A., expect: phenotypes:

$$
\mathrm{pr}^{+} \mathrm{vg}^{+}
$$

pr+ vg actual result:
pr vg ${ }^{+}$
pr vg
1339
151 :
154: 1195

Recombination... a brief review

Crossovers... a brief review (cont'd)

One recombination event: 2 recombinant and 2 non-recombinant products

Other types of crossovers (between the loci of interest)

\# xovers resulting gametes

Linkage and recombination-summary

Genes on the same chromosome can show linkage instead of independent assortment

Gametes (mostly) have the same allele combinations as the homologs in the parent

Recombination can give rise to gametes with non-parental (i.e, recombinant) allele combinations

Two parental types are more abundant and roughly equal
Non-parental types are less abundant and roughly equal to each other

Identifying the Parental Type

Time Out

Parental type: the arrangement of alleles on the parental chromosomes

Time Out

Parental type: the arrangement of alleles on the parental chromosomes

Time Out

Parental type: the arrangement of alleles on the parental chromosomes

Identifying the Parental Type

Option 1. Know the gametes that made the heterozygous parent
gametes:
define the parental
type
gametes:

Identifying the Parental Type

Option 2. The two most abundant progeny types
(only works if the genes show linkage)
Cross: $\quad \mathrm{pr}^{+} \mathrm{pr}_{\mathrm{vg}}{ }^{+} \mathrm{vg} \quad \mathrm{x} \quad \mathrm{pr} \mathrm{pr} \mathrm{vg} \mathrm{vg}$
Progeny:

What were the gametes that made the heterozygous parent?

