Genome 371, 1 March 2010, Lecture 13

Association Mapping

Mendelian versus Complex Phenotypes

How to Perform an Association Study

• Why Association Studies (Can) Work

Introduction to LOD score analysis

Common theme: linking genotype & phenotype

Mendelian Phenotypes

- Single gene
- Follows clear patterns of Mendelian Inheritance
- Strong relationship (correlation) between genotype and phenotype

Complex (aka "multifactorial") Phenotypes

Fig 5. Sagittal T1 weighted MRI after contrast injection showing a midline cerebellar mass with posterior compression of the brain stem.

- Multiple genes
- Familial aggregation, but no clear pattern of Mendelian Inheritance
- Weak relationship (correlation) between genotype and phenotype

Complications of Genotype-Phenotype Relationship

Expressivity and penetrance can vary

Fraction of individuals with a genotype exhibit the phenotype expected of that genotype

The degree to which a genotype is expressed — e.g., different individuals inheriting the same disease gene may be affected to different extents

Important Concept: disease causing -vs- susceptibility alleles

Complications of Genotype-Phenotype Relationship

Hydrangea

Genotype Phenotype) Environment

The genotype is an indication of the potential phenotype. The actual phenotype depends on the environment also.

Why Are We Talking About Association Studies?

modified from D. Altschuler

Effect size - measure of how much familial aggregation is seen for a trait (disease) of interest

Familial relative risk measures the risk of disease in someone with an affected relative compared to the risk of the general population

$$\lambda_{S} = \frac{P(\text{sib 2 has a disease} | \text{sib 1 has the disease})}{2}$$

P(diseased individual in the general population)

Example: λ_s (Sibling relative risk) of Cystic Fibrosis

CF is a rare autosomal recessive mendelian disease

Population frequency ~ 8/100,000

What is the $\lambda_{\rm S}$ of CF?

Disease	$\lambda_{ m S}$	- A Contraction of the contracti
Celiac disease	60 🔶	
Multiple sclerosis	20	
Type I Diabetes	15	
Testis cancer	8	
Breast cancer	2	

Complex Diseases Have Proven Refractory to Linkage Analysis

Population based gene mapping method

 Collect unrelated individuals with a disease (cases) and individuals without a disease (controls)

 Goal is to find an association between marker alleles and disease

A Simple Association Study

What is the genetic basis of the frowny faced gingerbread man (FFGM) disease?

1. Collect FFGM cases from the population

2. Collect controls from the population

A Simple Association Study

3. Genotype a genetic marker of interest (SNP1) in:

A Simple Association Study

4. Compare frequency in cases and controls

How Can We Determine Significance?

A case for our old friend $\chi^2 = \sum \frac{(0 - E)^2}{E}$

What is the Expectation? What's the Null Hypothesis?

- 6 Cases 6 Controls
- 12 C alleles 12 T alleles

Calculating χ^2 for an Association Study

Calculating χ^2 for an Association Study

Calculating χ^2 for an Association Study

E) ² /E
5
5
5
5

 $\chi^2 = 6.0$

 χ^2 table

	Р	0.995	0.975	0.900	0.500	0.100	0.050	0.025	0.010	0.005
	df									
	1	0.000	0.000	0.016	0.455	2.706	3.841	5.024	6.635	7.879
Τ	2	0.010	0.051	0.211	1.386	4.605	5.991	7,378	9.210	10.597
	3	0.072	0.216	0.584	2.366	6.251	7.815	9.348	11.345	12.838
	4	0.207	0.484	1.064	3.357	7.779	9.488	11.143	13.277	14.860
	5	0.412	0.831	1.610	4.351	9.236	11.070	12.832	15.086	16.750
	6	0.676	1.237	2.204	5.348	10.645	12.592	14.449	16.912	18.548
							/			

'Find appropriate df row

P value Find closest χ^2 value

What does this P value mean?

Would expect a deviation from the hypothesis of this magnitude (from chance alone) about 1% of the time

Therefore, reject the null hypothesis (boo-ya)

Why Do Genetic Association Studies Work?

• SNP1 is associated with FFGM

C allele more frequent in FFGM cases compared to controls

Does this mean the C allele causes FFGM?

No - it could just be on the same haplotype as the FFGM disease allele

Alleles between two or more loci can be correllated

Why Genetic Association Studies Work: Part I

Mutations arise on particular halotype backgrounds

Creates association among alleles

This is why association studies "work"

Population

Why Genetic Association Studies Work: Part II

How could we ever map anything if allelic associations extend over a whole chromosome?

What is the primary difference between the concepts of linkage and association?

Linkage: relationship between two or more loci

Association: relationship between the <u>alleles</u> of two or more loci

Genome-Wide Association Studies (GWAS)

"A genome-wide perspective of genetic variation in human metabolism" Nat. Genet. 2009, 42:137

Measured 163 metabolites in 1,809 individuals and performed a GWAS:

LOD Score Analysis in Humans

- Gene mapping in humans
- »Mapping using pedigrees—LOD score analysis, haplotype analysis
- »Mapping using populations—association studies

Mapping and cloning human genes

Based on position "positional cloning"

- » Find linkage (or association) of disease gene to a chromosomal landmark (e.g., a polymorphic site)
- » Clone the sequences from that region
- » Identify candidate genes in that region (does it look like a gene, act like a gene, etc.)
- » Tests: are the candidates mutated in disease patients?
- » Model organism or tissue culture: If we knock out that gene, do we get the predicted mutant phenotype?

Linkage mapping of "familial" traits

Bn = brain Br = breast Le = leukemia Os = osteosarcoma St = soft tissue

Li-Fraumeni syndrome: p53 checkpoint defect

Positional cloning of the BRCA1 gene

Stumbling blocks...

- » Which polymorphic loci to test?
- » Not all meioses are informative
- » Pedigrees may be too small to detect linkage with confidence

Don't know ahead of time... so do trial and error!

- look for linkage between the disease and polymorphic site #1
- then repeat with polymorphic site # 2

...etc.

A molecular marker map—

Variation in DNA sequence at specific chromosomal locations is mapped

These sites are used as landmarks in mapping genes

THE MERITE AND THE PROPERTY AND A DESCRIPTION OF A DESCRIPT 2 IN TERMER AND FRANKE DEMANDED AND IN THE WARDED FEAD FRANKLAR CHE WERE CENTRED AND A DRV AND A DEMANDED AND A 4 TO BE A REAL AND THE ALL MADE AND A REAL AND A R 6 C THE COMPANY OF A REPORT OF A DESCRIPTION OF A DESCRIP 7 I TELEVISION AND AND AND A 8 CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR OF A CONTRACTOR 1 CALE E CENTRE ALE A CENTRE EN ENCENTRE AND AN AN AN AN AN AN AN AN 13 | 1201 | 1 | 1100 | 10 15 I THE OF HER TE PRIME 16 ALCONOMING A CONTRACTOR OF A DECOMPOSITION OF A DECOMPOSITICA DECOMPOSITICA A DEC 17 FEBRUAR FEBRUARD FEBRUARD 21 _____ 22

map

4

chr

0

()

Stumbling blocks...

- » Which polymorphic loci to test?
- » Not all meioses are informative
- » Pedigrees may be too small to detect linkage with confidence

A test for informative vs. non-informative meiosis: <u>can we</u> <u>tell</u> if the gamete was recombinant?

cannot <u>tell</u> if the gamete \rightarrow non-informative was recombinant

Practice question

The two pedigrees show inheritance of an **autosomal dominant trait** (\mathbf{D} = disease, dominant; \mathbf{d} = normal, recessive). Numbers in {curly brackets} indicate alleles of a microsatellite repeat polymorphic locus. For each pedigree, state whether the meiosis **in II-1** is <u>informative</u> or <u>uninformative</u>, giving the parental types for II-1 in each case.

Stumbling blocks...

- » Which polymorphic loci to test?
- » Not all meioses are informative
- » Pedigrees may be too small to detect linkage with confidence

Mapping a gene using molecular markers (cont'd)

Stumbling blocks...

- » Which polymorphic loci to test?
- » Not all meioses are informative
- » Pedigrees may be too small to detect linkage with confidence

A solution—

Play the odds: What is more likely to give this pedigree outcome, linkage or non-linkage?