Lists, Strings and Enumeration methods - very important in scripting.

(Much of this comes from Writing Geoprocessing Scripts - Chapter 3)

Let’s look at lists, strings, and enumeration – once again.
from the ArcGIS Geoprocessor Programming Model 9.3
“list” methods from arcgiscripting toolbox
[image: image1.png]PAAEA L LA ALY

ListFields (InputValue, wildCard, fieldType): Python List
Listindexes (InputValue, wildCard): Python List
ListDatasets (wildCard, geometryType): Python List
ListFeatureClasses (wildCard, geometryType): Python List
ListRasters (wildCard, rasterType): Python List

ListTables (wildCard, tableType): Python List
ListWorkspaces (wildCard, workspaceType): Python List
ListEnvironments (wildCard): Python List

ListToolboxes (wildCard): Python List

ListTools (wildCard): Python List

Listinstallations (wildCard): Python List

Those methods work with all different types of data and provide flexibility for restricting a search by name or data category. A selection that…
· ListFields: Returns a list of fields found in the input value.

· ListIndexes: Returns a list of attribute indexes found in the input value.

· ListDatasets: Returns the datasets in the current workspace.

· ListFeatureClasses: Returns the feature classes in the current workspace.

· ListTables: Returns a list of tables found in the current workspace.

· ListWorkspaces: Returns a list of workspaces found in the current workspace.

· Each method returns an object

· Each object holds a list of data

· Type of data depends on method called

The result of those methods is an enumeration; a list of values without a known count. An enumeration in scripting may contain any type of data, such as string, which could be, for example, a pathname to a dataset, a field, or a row from a table. Once the enumeration has been created with the values you want, you can loop through it in your script to work with each individual value.
[image: image2.png]=— MaxSeverity
=— MessageCount

== OverwriteOutput: Boolean
=— ParameterCount

=— ScriptVersion

=-a Toolbox

From the key:

Property – the programming model diagram
#Get (Read) only
[image: image3]

print gp.MessageCount

#Get and Put (Read and Write)
[image: image4]

gp.Toolbox = “Analysis”

print gp.Toolbox

Method

gp.AddMessage(“Tool executed successfully”)

Returned objects
· Some properties and methods return an object

· ListFeatureClasses (wildCard, featureType): Object

· Describe (InputValue): Object

· InsertCursor (InputValue, SpatialReference): Object

· Returned object has its own methods and properties
· example ListFeatureClasses returns Enumeration object

Elements of the enumeration object accessed using “cursors” and “rows”
[image: image5.png]< InsertCursor (InputValue, SpatialReference): Object

<+ SearchCursor (InputYalue, WhereClause.
SpatialReference, FieldList, SortFelds): Object

<+ UpdateCursor (InputValue, WhereClause, Spatial
Reference, FieldList, SortFields): Object

Rows can get us to geometry

[image: image6.png]~—Reset()

< NewRow (Object
<~ InsertRow (Object)

Each row wil dynanically
support the fed name a5 a
property.

o= Frame:
<+ Getvalue (feiane)

[Fieaiiame.
~— Get/ave (fildName)
|+ Setvae (feaiame, value)

Parameters
The parameters of these methods are similar. A few, such as ListFields, require an input dataset value, as the items the methods are listing reside within a certain object or dataset. Other methods do not require an input dataset, as they list types of data in the current workspace that are defined in the environment settings. All methods have a wild card parameter, which is used to restrict the objects or datasets listed by name. A wild card defines a name filter, and all the contents in the newly created list must pass that filter.

A workspace is a directory, database, or dataset containing geographic data (for example, geodatabase, geodatabase feature dataset, coverage, folder) and other supporting data.

Geoprocessor uses enumerations for its list function results and cursor support, as enumerations support the flexibility required for sequential data access and multiple data types.
Example shows how this is done:

Create the geoprocessor object
GP = arcgisscripting
#

Set the workspace. List all of the feature classes that start with 'G'
GP.Workspace = "D:/St_Johns/data.mdb"
fcs = GP.ListFeatureClasses("G*")

gp.Workspace = “C://SanDiego.mdb”

fcList = gp.ListFeatureClasses (“*”, “All”)

Looping
You can iterate through “list” utilizing the looping mechanism.
While loop used to iterate through the list:

Reset the enumeration to make sure the first object is returned

fcs.reset()

Get the first feature class name

fc = fcs.next()

while fc: # While the feature class name is not None

 # Copy the features from the workspace to a folder

 GP.Copy(fc,"D:/St_Johns/Shapefiles/” + fc)

 # Get the next feature class name

 fc = fcs.next()

A While loop is ideal for working with an enumeration because it evaluates a condition before the loop is executed. By setting a value before the loop and setting the next value at the end of the loop, the loop will iterate until the value is set to a null or empty value. Enumerations have two methods and no proper​ties. The Reset method ensures that the first record in the enumeration is re​turned when the next method is called. The Next method simply returns the currently selected value in the enumeration. Calling Next increments the enumeration’s selection.
Types
The default behavior for all list methods is to list all supported types. A keyword is used to restrict the returned list to a specific type. The type keywords for each method are listed in the table below. Refer to the ArcGIS Help system for more information about feature classes, datasets, workspaces, fields, tables, and sup​ported raster formats.

Function Type Keywords
[image: image7.jpg]ListDatasets

All, Feature, Coverage, RasterCatalog, CAD, VPF, TIN,
Topology

ListFeatureClasses

All, Point, Label, Node, Line, Arc, Route, Polygon,
Region

ListFields

All, Smallinteger, Integer, Single, Double, String, Date,
OID, Geometry, Blob

ListWorkspaces

All, Coverage, Access, SDE, Shapefile

ListTables

All, dBASE, INFO

ListRasters

All, ADRG, BIL, BIP, BSQ, BMP, CADRG, CIB, ERS,
GIF, GIS, GRID, STACK, IMG, JPEG, LAN, SID, SDE,
TIFF, RAW, PNG, NITF

Strings – Python particulars

gp.Workspace = “C:\\World”

gp.Select_analysis("Cities.shp“, “Toronto.shp”,

‘”Name” = \’Toronto\’ ‘) # see below
SQL expression

shapefile: “Name” = ‘Toronto’

feature class: [Name] = ‘Toronto’

SQL string: ”Name” = ’Toronto’

“”Name” = ’Toronto’” #-> python reads:

#“” as the beginning and end of string

‘”Name” = ’Toronto’ ‘ #-> python reads:

#‘ “Name” = ‘ as string and gets confused with the letter T

#Need a backslash to escape the quotes in ‘Toronto’

#‘”Name” = \’Toronto\’ ‘)

