Geography 465 - Data properties and access
The Geoprocessor provides a number of functions for describing and manipulating data. They may be used to access general properties, such as a dataset’s type, or specific values from attributes.

The Describe method is the core of this functionality.
Chapter 6

DESCRIBING DATA .. 66

Fields and indexes ... 68

The spatial reference object ... 69

Property sets ... 71

Checking for existence .. 71

DATA ACCESS USING CURSORS .. 73

Row enumeration object ... 74

UpdateRow ... 74

DeleteRow .. 74

InsertRow .. 75

GetValue and SetValue .. 75

Specifying a query ... 76

The geometry object ... 76
Reading geometries ... 77

Writing geometries .. 79

Setting a cursor’s spatial reference .. 81

Locking .. 82
Chapter 6 “Writing Geoprocessor Scripts” explains how to use the geoprocessor to access the feature class properties. However, as you view the method “depiction” on left side of the Geoprocessor programming model 9.3, and feature-class properties in the box on the right-side, then compare with Chapter 6 you will detect differences. Why?
For example, in “Writing Geoprocessor Scripts” we have…

[image: image25.jpg]

In an earlier session of class, it was mentioned that there was something called the win32com.client based on the Component Objective Model (COM).

The geoprocessor programming model – three ways to create the geoprocessor object.

(from ArcGIS Desktop 9.3 help documentation)
[image: image2.png]Geoprocessing

About getting started with writing geoprocessing scripts

ArcGIS 9 includes scripting support for many of today's most popular scripting environments, such as Python,
VBScript, JScript, and Perl. A new ArcObjects component, the geoprocessor, manages all the geoprocessing
functions available within ArcGIS. It is an object that provides a single access point and environment for the
execution of any geoprocessing tool in ArcGIS, including extensions. The geoprocessor implements automation
via a coarse-grained scripting object. This scripting object can be created in three different ways at 9.3:

« Using the native arcgisscripting module, setting a 9.3 version

import arcgisscripring
9p = arcgisscripring.create(.3)

+ Using the native arcgisscripting module.

import arcgisscripring
90 = arcgisseripting.create ()

« Using COM IDispatch interface

import win32com.client
9p = win32con.clien.Dispateh ("esriGeoprocessing. GpDispatch. 17)

NOTE: In order to use the win32com.client module successfully, PythonWin should be be installed. For more information
on installing PythonWin, see Installing PythonWin.

So what does this really mean to you as a programmer?

When “describing data” in a programming model we are committed to a particular version a programming (scripting) language. Often times the language changes occur as enhancements and are cumulative. Sometimes the language changes are corrections of “style” as best practice for that language.

Why use one of the GP environments over another?
[image: image3.png]All geoprocessing python scripts can import either the arcgisscripting or win32com modules to instantiate the
‘geoprocessor object. The examples below illustrate the difference. The arcgisscripting module s built closely
upon Python version 2.5.1 and requires this version to create the geoprocessor. Scripts can be run on different.
versions of Python if they use win32com to create the geoprocessor.

9.3-version geoprocessor

4 Create the geoprocessor using the arcgisscripting module using
4 9.3 for the oprional version argument

+

import arcgisscripting

90 = arcgisscripting.create(s.3)

gp.workspace = "c:/Tongass”™
9p-clip_analysis("standbd”, "clipeov”, "standbd_clip”, "BOLY", "1.25")

9.2-version geoprocessor

4 Create the geoprocessor using the arcgisscripting module
+

import arcgisscripting

90 = arcgisseripting.create ()

gp.workspace = "c:/Tongass”™
9p-clip_analysis("standbd”, "clipeov”, "standbd_clip”, "BOLY", "1.25")

Dispatch

4 Create the geoprocessor using the win3com.client module
+

import win32com.client

9p = win32con.clien.Dispateh ("esriGeoprocessing. GpDispatch. 17)
gp.workspace = "c:/Tongass”™

9p-clip_analysis("standbd”, "clipeov”, "standbd_clip”, "BOLY", "1.25")

Nonetheless, all models use the “Describe” method in a very similar way, just not the same per se depending on the Object Model being used.

Describing Data
In the GP programming model, the Describe method creates a schema object. Its properties are dynamic, depending on what data type is described.
Geoprocessing tools work with all types of data, such as geodatabase feature classes, shapefiles, rasters, tables, topologies and networks. Each piece of data has properties that may be used to control the flow of a script or the parameters of a tool. For example, the output feature type of an intersect operation is dependent on the type of data being intersected. When the Intersect tool is run within a script on a list of input datasets, it must be able to determine the input “data types” used so the correct output “data type” can be set.
Using the geoprocessor’s Describe method, a dataset’s properties may be deter​mined, and then used to make decisions. The output of Describe is an object contain​ing properties such as data type, fields, indices, and so on. Different dataset types have different properties, so the object created by Describe changes its properties depending on what is being described. Note the use of the terms data type, feature type and shape type use. Feature type and shape type are “abstract data types”.

Import COM Dispatch and create geoprocessor
from win32com.client import Dispatch
GP = Dispatch("esriGeoprocessing.GpDispatch.1")

Describe feature class
desc = GP.Describe("D:/St_Johns/data.mdb/roads")
type = desc.FeatureType

Any feature class will have the stan​dard feature class properties (see below) – these are propertiese of an abstract data type. This includes geodatabase, shapefile, coverage, CAD, Vector Product Format and Smart Data Compression feature classes.
[image: image4.jpg]FeatureClass Properties

m— FeatureType

®B— HasM: Boolean

®— HasZ: Boolean

®=— HasOID: Boolean

B— HasSpatiallndex: Boolean
B— RelationshipClassNames

®=— ShapeFieldName

®B— ShapeType

®— Extent

®— OIDFieldName

B— Fields: Object

B— |Indexes: Object

B— TopologyName

B— Spatial Reference: Object

All simple tables in the geodatabase require an ObjectID (OID) type field. It uniquely identifies each object stored in the table in the database. Other table types, such as INFO or dBASE, do not require an OID field.
The following charts show the properties available for each abstract data type (here feature type will coincide with certain shape types for geodatabase feature classes).

.
Geodatabase feature classes
[image: image5.jpg]Feature Class

FeatureType simple, simple_junction, simple_edge,
complex_junction, complex_edge, annotation,
coverage_annotation, dimension

TopologyName The name of the topology this feature class
belongs to.

HasM The M state: true for geometry is M enabled and
false for not.

HasZ The Z state: true for geometry is Z enabled and

false for not.

HasSpatiallndex

The Spatiallndex state: true for has a spatial index
and false for not.

RelationshipClassNames

A semicolon delimited list of the names of the
associated relationship classes.

ShapeFieldName The name of the shape field.

ShapeType null, point, multipoint, line, circulararc, ellipticarc
bezier3curve, path, polyline, ring, polygon
envelope, any, bag, multiPatch, triangleStrip
triangleFan, ray, sphere

Extent XMin; YMin; XMax; YMax

SpatialReference

The spatial reference object.

HasOID The OID state: true for has OID field and false for
not.

OIDFieldName The name of the object id field name.

Fields The fields object for this table. This is the same
as using the ListFields function.

Indexes The indexes object for this table. This is the same

as using the Listindexes function.

[image: image6.jpg]Coverage FeatureClass Properties

m— FeatureClassType

m— HasFAT: Boolean

m— Topology

m— Extent

m— Spatial Reference: Object
m— HasOID: Boolean

®#— OIDFieldName

B— Fields: Object

B— |Indexes: Object

Coverage feature classes always exist within a coverage dataset. Some of the coverage feature class properties stem from this relationship.
[image: image7.jpg]Layer Properties

m— FeatureClass
m— FIDSet

m— Fieldinfo

m— WhereClause
m— NameString

Layers and table views are used to limit the features/rows from the underlying data source. This is done using a “where” clause to define an initial set of features, a selection, or both. The FieldInfo property is used to set what fields are available and what their names are.
[image: image8.jpg]TableView Properties

=— Table

=— FIDSet

»— Fieldinfc

=— WhereClause
m— NameString

Dataset Properties

®— DatasetType
=— Extent

=— Spatial

Datasets are containers that define the spatial reference and extents of their contents.
Coverages, geodata​base feature datasets, and CAD datasets are all examples of this.
[image: image9.jpg]Coverage Feature Class

FeatureClassType

point, arc, polygon, node, tic, annotation, section, route
link, region, label, file

HasFAT true or false
Topology notapplicable, preliminary, exists, unknown
Extent XMin; YMin; XMax; YMax

SpatialReference

The spatial reference object.

HasOID The OID state: true for has OID field and false for not.
OIDFieldName The name of the object id field name.
Fields The fields object for this table. This is the same as using
the ListFields function.
Indexes The indexes object for this table. This is the same as
using the Listindexes function.
Layer
Featureclass The path of the feature class associated with
the the layer
FIDSet A semicolon delimited list of integer ids (record numbers)
FieldInfo The field info object as: From_name To_name Hidden_flag

Ratio; From_name; To_name Hidden_flag Ratio; ...

WhereClause

The definition query where clause

NameString The name of the layer
TableView
Table The path of the table associated with
the table view
FIDSet A semicolon delimited list of integer ids (record numbers).
FieldInfo The field info object as: From_name To_name Hidden_flag

Ratio; From_name; To_name Hidden_flag Ratio; ...

WhereClause

The definition query where clause

NameString The name of the table view

Dataset

DatasetType any, container, coverage, geo, featuredataset, featureclass,
planargraph, geometricNetwork, topology. text, table,
relationshipclass, rasterdataset, rasterband, tin, caddrawing
rastercatalog, toolbox, tool

Extent XMin; YMin; XMax; YMax

SpatialReference

The spatial reference object.

[image: image10.jpg]Relationship Class Properties

Relationship Class

=— Versioned: Boolean
m— Fields: Object

Table Properties

=— HasOID: Boolean
=— QOIDFieldName
=— Fields: Object
=— |ndexes: Object

Workspace Properties

m— Connection Properties
»— ConnectionString

=— Domains

=— WorkspaceFactoryProgID
=— WorkspaceType

Versioned

The version state: true for versioned and false for not.

Fields The fields object for this fable. This is the same as using
the ListFields function.

Table
HasOID The OID state: true for has OID field and false for not.
OIDFieldName The name of the object id field name.
Fields’ The fields object for this table. This is the same as using
the ListFields function.
Indexes The indexes object for this table. This is the same as
using the Listindexes function.
Workspace
ConnectionProperties A semicolon delimited list of the pair of property

name and the property value. Prop1: value1;

ConnectionString

The connection string

Domains

A semicolon delimited [ist of the names of the
domains

WorkspaceFactoryProglD

The id as a string

WorkspaceType

filesystem, localdatabase, remotedatabase

Shapefile, personal geodatabase, and coverage workspaces have no connection properties. Domains are only found in Access and ArcSDE workspaces, as domains are only found in geodatabases.
For more information about enumera​tions and how to work with them, refer to Chapter 4.
Fields and indexes
The fields or indexes property of a table or feature class is exposed as an enu​meration. In this case, the enumeration may contain field or index objects, con​sisting of properties for each field or index.
The ListField and ListIndexes meth​ods may be used to create the same enumerations or limit their contents. The following example shows how to create an enumeration of fields and how to loop through the contents to find a specific field.

Import COM Dispatch and create geoprocessor
from win32com.client import Dispatch
GP = Dispatch("esriGeoprocessing.GpDispatch.1")

Describe feature class

fc = "D:/St_Johns/data.mdb/roads"

desc = GP.Describe(fc)

fields = desc.Fields

field = fields.next()

while field:

 if field.Name == "Flag":

 # Set the value for the field and exit loop

GP.CalculateField(fc, "Flag", "1")

 break

 field = fields.next()

[image: image11.jpg]Field

=— Name

=— AliasName

®— Domain

=— Editable: Boolean
=— HasIndex: Boolean
=— |sNullable: Boolean
=— |sUnigue: Boolean
=— Length

=— Type

=— Scale

=— Precision

For more information on ListFields
and Listindexes, refer to Chapter 4.
These functions may be used to limit
the resuits based on name and type.

Index

=— Name

=— [sAscending: Boolean
=— [sUnigue: Boolean
®— Figlds: Object

The properties of the field and index objects are listed below:

Field

Name The name of the field

AliasName The alias name of the field

Domain The name of the associated domain

Editable True if the field is editable

HasIndex True if the field has an index

IsNullable True if the field is nullable

IsUnique True if the field is unique

Length The field's length

Type Smallinteger, Integer, Single, Double, String, Date, OID
Geometry, Blob

Scale The field's scale

Precision The field's precision

Index

Name The name of the index

IsAscending True if the index is sorted in an ascending order

IsUnique True if the index is unique

Fields The fields object for this index

The spatial reference object
Geographic datasets, such as feature classes, coverages, and rasters, have a spatial reference, which defines a dataset’s coordinate system, XY domain, M domain, and Z domain. Each part of the spatial reference has a number of properties, especially the coordinate system, which defines what map projection options are used to define horizontal coordinates. All this information is available from the spatial reference property, which is actually another object containing a number of properties.

Describe feature class

fc = "D:/St_Johns/data.mdb/roads"

desc = GP.Describe(fc)

Get the spatial reference

SR = desc.SpatialReference

Check if the feature class is in projected space

if SR.Type == "Projected":

 GP.Copy(fc,"D:/St_Johns/data.mdb/UTM")

 For more information about projected and geographic coordinate systems and ellipsoids, refer to Understanding Map Projections.

The properties of the spatial reference object are listed below:

[image: image12.jpg]GpDispatch

SpatialReference

Type

Name

Abbreviation
Remarks
FactoryCode
HasMPrecision
HasXYPrecision
HasZPrecision
FalseOriginAndUnits
MFalseOriginAndUnits
ZFalseOriginAndUnits
Domain

MDomain

ZDomain

Usage
CentralMeridian*
CentralMeridianinDegrees*
LongitudeOfCrigin®
LatitudeOf1st*
LatitudeOf2nd*
FalseEasting®
FalseNorthing*
CentralParalle[*
StandardParallel1*
StandardParallel2*
LongitudeOf1st*
LongitudeQf2nd*
ScaleFactor*
Azimuth*
Classification™
SemiMajorAxis**
SemiMinorAxis**
Flattening**
Longitude™
RadiansPerUnit™

IITIIIIII IR IIIIIIIIZIIIIIIIIINIIINI

* Projected Coordinate system only
* Geographic Coordinate system only

[image: image13.jpg]Spatial Reference

Type

Unknown, Projected, Geographic

Name

The name of the projection

Abbreviation

Abbreviated projection name

Remarks Any user remarks made when the spatial
reference was created
FactoryCode The factory code of the spatial reference

HasXYPrecision

True if the underlying datasource stores its XY
coordinates as integers

HasMPrecision

True if the underlying datasource stores its M
values as integers

HasZPrecision

True if the underlying datasource stores its Z
values as integers

FalseOriginAndUnits

falseX;falseY;xyUnits

MFalseOriginAndUnits

falseM:;MUnits

ZFalseOriginAndUnits

falseZ;ZUnits

Domain XMin;YMin;XMax;YMax

MDomain MMin;MMax

ZDomain ZMin;ZMax

Usage The usage notes of a projected coordinate
system.

CentralMeridian* Defines the origin of the x-coordinates. Decimal
Degrees

CentralMeridianinDegrees*

Defines the origin of the x-coordinates. Degrees,
Minutes, Seconds

LongitudeOfOrigin*

Defines the origin of the y-coordinates. Decimal
Degrees

LatitudeOf1st* The latitude of the first point of a projected
coordinate system.
LatitudeOf2nd* The latitude of the second point of a

projected coordinate system.

FalseEasting®

A linear value applied to the origin of x-
coordinates.

FalseNorthing®

A linear value applied to the origin of y-
coordinates.

CentralParallel*

Defines the origin of the y-coordinates. Same as
the LongitudeOfOrigin

StandardParallel1*

Used with conic projections to define the latitude
lines where the scale is 1.0.

StandardParallel2*

Used with conic projections to define the latitude
lines where the scale is 1.0.

LongitudeOf1st* The longitude of the first point of a
projected coordinate system.
LongitudeOf2nd* The longitude of the second point of a

projected coordinate system.

[image: image14.jpg]ScaleFactor*

A unitless value applied to the center point or line
of a map projection

Azimuth*

Defines the center line of a projection.

Classification*

The classification of a map projection.

SemiMajorAxis**

The longer radius of an ellipsoid.

SemiMinorAxis**

The shorter radius of an ellipsoid.

Flattening**

The difference in length between the SemiMajor
and SemiMinor axes expressed as a fraction or a
decimal.

Longitude**

The least (left) longitude bounding a 360 degree
range.

RadiansPerUnit**

The radians per angular unit.

* Projected coordinate system only
+» Geographic coordinate system only

Property sets
Some properties are composed of a set of values. The tolerances of a coverage or the connection properties of a workspace are examples of this. Property sets have named properties that can be called from the property set itself. In the example below, the tolerances of a coverage are printed to the standard output:

from win32com.client import Dispatch
GP = Dispatch("esriGeoprocessing.GpDispatch.1")

desc = GP.Describe("D:/St_Johns/freshwater")
covTols = desc.tolerances
print covTols.Fuzzy
print covTols.Dangle
print covTols.TicMatch
print covTols.Edit
print covTols.NodeSnap
print covTols.Weed
print covTols.Grain
print covTols.Snap

Property sets are typically used when the properties of the object being described may vary. The connection properties of an enterprise geodatabase workspace will vary depending on the type of ArcSDE database that is being used, so it is well suited to a property set that has no predefined set of values. Refer to ArcObjects documentation for more information about workspace properties.

Checking for existence of the data
Scripts often use paths to data, which may be problematic if the data being referenced does not exist. Data may be deleted or moved between executions of a script, which will cause errors if the path is used as a geoprocessing tool param​eter. If there is a possibility of a referenced dataset not existing during a script’s execution, the geoprocessor’s Exists method should be used. The function simply returns a Boolean value for the existence of a dataset or object at the time of execution. Objects, such as a cursor, spatial reference, or any other object man​aged by the geoprocessor, may also be used as input to Exists. Exists will work with any type of data available in ArcCatalog or with any system file or folder. An ArcCatalog path must be used for this and any other method of the geoprocessor when referring to GIS data. If the data resides in an enterprise geodatabase, the name must be fully qualified. See Chapter 7 for more informa​tion on working with geodatabases and qualifying names.

[image: image15.jpg]GpDispatch

}4— Exists (InputValue): Boolean

The default behavior for all tools is to overwrite any output that already exists.This behavior may be changed by changing the overwrite data setting to false. An error is returned when the overwrite data setting is false and a tool’s specified output already exists.
GP.Workspace = "D:/St_Johns/data.mdb"

Clip roads feature class if it exists

fc = "D:/St_Johns/data.mdb/roads"

if GP.Exists(fc):

 GP.clip_analysis(fc,"urban_area","urban_roads")

[image: image16.jpg]DATA ACCESS USING CURSORS

[image: image17.jpg]'E»GpDispatch

<« InsertCursor (InputValue, SpatialReference): Object
SearchCursor (InputValue, WhereClause,
SpatialReference): Object
UpdateCursor (InputValue, WhereClause, Spatial
= 'Reference): Object

A cursor is a data access object that can either be used to iterate over the set of rows in a table or insert new rows into a table. Cursors have three forms, referred to as a search, insert, or update cursor. Each type of cursor is created by a corre​sponding geoprocessor method (SearchCursor, InsertCursor, or UpdateCursor) on a table, table view, feature class, or feature layer. A search cursor can be used to retrieve rows. An update cursor can be used to positionally update and delete rows, while an insert cursor is used to insert rows into a table or feature class.

All three cursor methods create an enumeration of row objects. The methods supported by the row object depend on the type of cursor created. The Next method on a search or update cursor returns the next row in the enumeration. To retrieve all rows in a table containing N rows, the script must make N calls to Next. In Python, a call to Next after the last row in the result set has been re​trieved returns None, which is a special data type that acts as a placeholder.

Cursors can only be navigated in a forward direction; they do not support backing up and retrieving rows that have already been retrieved or making multiple passes over data. If a script needs to make multiple passes over the data, the application needs to reexecute the method that returned the cursor. If both executions of a method are made within the same edit session (or database transaction with the appropriate level of isolation), the application is guaranteed not to see any changes made to the data by other concurrently executing applications. This example shows a simple cursor operation. It prints out the value of the each field for the first row in a table.

Create search cursor

rows = GP.SearchCursor(“D:/st_johns/roads.shp”)

row = rows.Next()

fields = GP.ListFields(“D:/st_johns/roads.shp”)

field = fields.Next()

while field:

 if field.type != “Geometry”:

 print field.name + “: Value = “ + str(row.GetValue(field.name))

 field = fields.Next()

Note that no data is fetched from the table until the Next method is called.

When you are using a cursor and changing the underlying data at the same time, you may be concerned about the cursor operation and positioning. The situation, summarized by the table below, is actually quite simple.

[image: image18.jpg]Cursor type Method Effect on position
Search Next Advances position by one
NewRow followed by No effect (the new row does not belong to
InsertRow the cursor)
ey Change values, followed by No effect
InsertRow
Not applicable—insert cursors do not
InsertRow -
have position, you may not use/NextRow
Next Advances position by one
Update UpdateRow No effect
DeleteRow Moves position back by one

All row objects retrieved from a table logically contain the same ordered set of fields. In particular, the order of fields in a row of a table is the same as the order of fields returned from the ListFields method. The row will only contain the visible fields of the table used to create the cursor, with each field name being a property of the object.

Fields are accessed using the row object. Values are returned using either the field name as a property of the row object or by its position in the table.
[image: image19.jpg]Rows(SearchCursor, InsertCursor,
UpdateCursor)

SearchCursor

< Next: Object
<+ Reset

InsertCursor

-« Next: Object

< Reset

<+ NewRow(Object)
< InsertRow(Object)

UpdateCursor
< Next: Object
<« Reset

< UpdateRow(Object)
<« DeleteRow(Object)

Row enumeration object
The methods of the enumeration object created by the various cursor methods vary depending on the type of cursor created. The following chart shows what methods are supported for each cursor type.

[image: image20.jpg]Cursor type

Supported Methods

Description

Search Next Retrieves the next row object
NewRow Creates an empty row object
Insert InsertRow Will insert a row object into the table
Next Retrieves the next row object
UpdateRow Will _u!odate the c_urrent row with a
modified row object
Update DeleteRow Removes the row from the table
Next Retrieves the next row object

UpdateRow
The UpdateRow method can be used to update the row at the current position of an update cursor. Making a call to Next on a cursor returns a row and posi​tions the cursor on that row. After fetching a row object using Next, the script can modify the row as needed and call UpdateRow, passing in the modified row.

Create update cursor for feature class
rows = GP.UpdateCursor("D:/St_Johns/data.mdb/roads")
row = rows.Next()
Update the field used in buffer so the distance is based on the road
type. Road type is either 1, 2, 3 or 4. Distance is in meters.
while row:

 row.buffer_distance = row.road_type * 100
 rows.UpdateRow(row)
 row = rows.Next()

DeleteRow
The DeleteRow method can be used to delete the row at the current position of an update cursor (that is, to delete the row returned by the last call to Next on this cursor). After fetching the row object using Next, the script should call DeleteRow on the cursor to delete the row.

Create update cursor for feature class
rows = GP.UpdateCursor("D:/St_Johns/data.mdb/roads")
row = rows.Next()
while row: # Delete all rows that have a roads type of 4

 if row.road_type == 4:
 rows.DeleteRow(row)
 row = rows.Next()

Cursors honor layer/table view definition queries and selections.The row enumeration object will only contain the rows that would be used by any geoprocessing tool during an operation.
[image: image21.jpg]Row

=& FieldName
< GetValue (fieldName)
< SetValue (fieldName, Value)

InsertRow
Insert cursors are used to bulk insert rows. The InsertRow method takes a row object as an argument. The script obtains a new row object using the NewRow method on the enumeration object into which rows are to be inserted. Each call to InsertRow on the cursor creates a new row in the table whose initial values are set to the values in the input row.

Create insert cursor for table

rows = GP.InsertCursor("D:/St_Johns/data.mdb/roads_lut")

x = 1

Create 25 new rows. Set the initial row id and distance values

while x <= 25:

 row = rows.NewRow()

 row.rowid = x

 row.distance = 100

 rows.InsertRow(row)

 x = x + 1

Not all scripting languages support the evaluation of a variable as an object property or method. In these cases the GetValue and SetValue methods are particularly useful. Python supports the use of a vari​able as a property or method name using the Eval function.

GetValue and SetValue
The row object may access and update field values using field names or a field’s index position. This approach works well when the field names or order is known, but this may not always be the case. Variables may be used to create generic scripts with no knowledge of what fields exist within a table. The row has two methods that allow the use of variables as field names. The GetValue method simply returns a field’s value, with the field name being the only input parameter. The SetValue method has two parameters—the field to be updated and the value to be used. The sample below creates a lookup table for all polygon feature classes in a workspace. The lookup table contains an ID that corresponds to the ObjectID for each feature in the feature class and a distance value that could be used for the Buffer tool.

List the polygon feature classes

fcs = GP.ListFeatureclasses("*","polygon")

Loop through the results. Get the ObjectID field

fc = fcs.Next

while fc:

 OIDFields = GP.ListFields(fc,"*","OID")

 # Create a search cursor on the feature class and an insert cursor

 # on a new look-up-table

 featcur = GP.SearchCursor(fc)

 # Create look-up-table and add fields

 tab = fc + "_lut"

 GP.CreateTable(tab)

 GP.AddField(tab,"id","long")

 GP.AddField(tab,"dist","long")

 # Open insert cursor on new look-up-table

 tabcur = GP.InsertCursor(tab)

 f_row = featcur.Next()

 # Get the OID field from the feature class

 OIDField = OIDFields.Next()

Loop through the rows in the feature class

 while f_row:

 # Create a new row for the look-up-table and set its id to be the

 # same as the feature OID and set the distance to 100.

 t_row = tabcur.NewRow()

 t_row.id = f_row.GetValue(OIDField.name)

 t_row.dist = 100

 # Insert the row into the look-up-table and get the next row

 # from the feature class

 tabcur.InsertRow(row)

 f_row = featcur.Next()

 fc = fcs.Next

Queries

Structured Query Language (SQL) is a powerful language you use to define one or more criteria that can consist of attributes, operators, and calculations. For example, imagine you have a table of customer data and want to find those who spent more than $50,000 with you last year and whose business type is “Restaurant”. You would select the customers with this expression: “Sales > 50000 AND Business_type = ‘Restaurant’”.
Specifying a query
When a query is specified for an update or search cursor, only the records satisfy​ing that query are returned. A SQL query represents a subset of the single table queries that may be made against a table in a SQL database using the SQL SELECT statement. The syntax used to specify the where clause is the same as that of the underlying database holding the data. Refer to the ArcGIS Desktop Help system for more information on defining SQL where clauses. The example below filters the rows of a search cursor to only roads of a certain type:

Import COM Dispatch and create geoprocessor

from win32com.client import Dispatch

GP = Dispatch("esriGeoprocessing.GpDispatch.1")

Create search cursor

rows = GP.SearchCursor("D:/St_Johns/data.mdb/roads",

 "[type] = ‘residential’")

row = rows.Next()

while row:

 # Print the name of the residential road

 print row.Name

 row = rows.Next()

Geometries
All simple feature classes require a geometry type field. It contains the actual geometry of a feature and is typically called Shape.The ListFields or Describe methods may be used to retrieve the geometry field from a feature class.The name of the field can be determined from the field object.

The geometry object
Using a geometry object, the geoprocessor supports cursor access of feature geometry. The object, created by the row object when the shape field is specified, exposes a number of properties that describe a feature. The example below shows how to create a geometry object for each line feature in a feature class and sum their length:

Create search cursor

rows = GP.SearchCursor("D:/St_Johns/data.mdb/roads")

row = rows.Next()

Calculate the total length of all roads

length = 0

while row:

 # Create the geometry object

 feat = row.shape

 length = length + feat.Length

 row = rows.Next()

print length

[image: image22.jpg]=— Type

= Extent
=— Centroid
=— FirstPoint
=— | astPoint

B— Area

— Length

»— IsMultipart
=— PartCount
-~ GetPart (Index)

Geometry

Type null, point, multipoint, line, circulararc, ellipticarc
bezier3curve, path, polyline, ring, polygon
envelope. any, bag, multiPatch, triangleStrip
triangleFan, ray, sphere

Extent XMin; YMin; XMax; YMax

Centroid X, Y This is the centroid for polygons, the point
closest to the center of the extent of the
multipoint. and the midpoint of the line

FirstPoint The first coordinate of the feature

LastPoint The last coordinate of the feature

Area The area of a polygon. Empty for all other feature
types

Length The length of the linear feature. Empty for point.
multipoint or polygon feature types

IsMultipart True if the number of parts for this geometry is
more than one.

PartCount The number of geometry parts for the feature

GetPart(optional index)

Returns an array of point objects for a particular part
of geometry or an array containing a number of
arrays, one for each part

Reading geometries - Each feature in a feature class contains a set of points defining the vertices of a polygon or line or a single coordinate defining a point feature. These points may be accessed using the geometry object, which returns them in an array of point objects. The array object may contain any number of geoprocessing objects, such as points, geometries, or spatial references.

[image: image23.jpg]Reset

Next: Object
Add(Object)
Insert(Index, Object)
Remove(Index, Object)
RemoveAll
GetObject(Index): Object

Array

Reset() Resets the array to the first object

Next(} Returns the next object in the array

Count The number of objects in the array
Add(Object) Adds an object to the array in the last position

Insert{Index, Object)

Adds an object to the array in a specific position

Remove(Index)

Removes a specific object from the array

RemoveAll()

Removes all abjects and creates an empty array

GetObject(Index)

Returns a specific object from the array

Features in a geodatabase or shapefile may have multiple parts. The geometry object’s PartCount property returns the number of parts for a feature. The GetPart method will return an array of point objects for a particular part of the geometry if an index is specified. If an index is not specified, an array containing an array of point objects for each geometry part will be returned. The example below will print the coordinates for all features to the output window:

Create search cursor
rows = GP.SearchCursor("D:/St_Johns/data.mdb/roads")
row = rows.Next()
Print the coordinates of each road line feature
while row:

 # Create the geometry object
 feat = row.shape
 a = 0

 while a < feat.PartCount:
 # Get each part of the geometry
 roadArray = feat.GetPart(a)
 roadArray.Reset
 # Get the first point object for the feature
 pnt = roadArray.Next()

 while pnt: print str(pnt.id) + ";" + str(pnt.x) + ";" + str(pnt.y) pnt = roadArray.Next()

 a = a + 1
 row = rows.Next()

Point features return a single point object instead of an array of point objects. All other feature types—polygon, polyline, and multipoint—return an array of point objects or an array containing multiple arrays of point objects if the feature has multiple parts.
[image: image1.jpg]GpDispatch

<« Describe (InputValue): Object

[image: image24.jpg]Point

The horizontal coordinate of the point

Y The vertical coordinate of the point

z The elevation value of the point

M The measure value of the point

ID A long value used to ungiuely identify the point

A multipart feature is composed of more than one physical part but only references one set of attributes in the database. For example, in a layer of states, the State of Hawaii could be considered a multipart feature. Although composed of many islands, it would be recorded in the database as one feature.
A ring is a closed path that defines a two-dimensional area. A valid ring con​sists of a valid path such that the from and to points of the ring have the same X and Y coordinates.A clockwise ring is an exterior ring, and a counterclockwise ring defines an interior ring.

A polygon will consist of a number of rings if it contains holes. The array of point objects returned for a polygon will contain the points for the exterior ring and all inner rings. The exterior ring is always returned first, followed by inner rings, with null point objects as the separator. Whenever a script is reading coor​dinates for polygons in a geodatabase or shapefile, it should contain logic for handling inner rings if this information is required by the script; otherwise, only the exterior ring will be read. The following script prints out the coordinates for polygons in a feature class. It shows how to handle multipart polygons and poly​gons with multiple rings.

from win32com.client import constants, Dispatch
from types import *
import pythoncom, sys

GP = Dispatch("esriGeoprocessing.GpDispatch.1")
fc = sys.argv[1]

dsc = GP.describe(fc)
print "Describing:", fc

print "Extent:"
print dsc.Extent

Create search cursor
rows = GP.SearchCursor(fc)
row = rows.Next()
Print the coordinates of each landuse polygon feature
while row:

 # Create the geometry object

 feat = row.shape
 a = 0
 print " "

 print "Feature: " + str(row.fid) + " number of parts: " +
 str(feat.PartCount)
 while a < feat.PartCount:

 # Get each part of the geometry
 print "Part: " + str(a + 1)
 LUArray = feat.GetPart(a)
 LUArray.Reset()

 b = 1
 # Get the first point object for the polygon
 pnt = LUArray.Next()

 while pnt:

 print str(pnt.id) + "," + str(pnt.x) + "," + str(pnt.y)
 pnt = LUArray.Next()
 # The point may be a null separator, so check to
 # see if another point exists.

 if not pnt:

 pnt = LUArray.Next() # If the point does exist, continue printing # the coordinates of the inner ring.

 if pnt: print "Inner ring: " + str(b)

 b = b + 1
 print " "
 a = a + 1

 row = rows.Next()

Strings may be easily concatenated in Python using the addition operator. The Str function can be used to return the string value of any object so the value can be concatenated with other strings.

Writing geometries
Using insert and update cursors, scripts may create new features in a feature class or update existing ones. A script can define a feature by creating a point object, populating its properties and placing it in an array. That array may then be used to set a feature’s geometry. A single geometry part is defined by an array of points, so a multipart feature can be created from multiple arrays of points.

Read the upcoming section about locking to understand how cursors affect other applications.

The following example shows how to read a text file containing a series of linear coordinates and then use them to create a new feature class.

Create a new line feature class using a text file of coordinates.
The coordinate file is in the format of ID;X;Y.
import win32com.client, sys, fileinput, os, string
Create the geoprocessor object
GP = win32com.client.Dispatch("esriGeoprocessing.GPDispatch.1")

Get the name of the input file
infile = sys.argv[1]
Get the name of the output feature class
fcname = sys.argv[2]
Get the name of the template feature class.
template = sys.argv[3]
try:

 # Create the feature class GP.CreateFeatureclass(os.path.dirname(fcname),os.path.basename(fcname),

 "Polyline", template) # Open an insert cursor for the new feature class. cur = GP.InsertCursor(fcname) # Create the array and point objects needed to create a feature lineArray = GP.CreateObject("Array") pnt = GP.CreateObject("Point") ID = -1 # Initialize a variable for keeping track of a feature's ID. # Assume all IDs are positive. for line in fileinput.input(infile): # Open the input file

 # Create a list of input values and set the point properties.
 values = string.split(line,";")
 pnt.id = values[0]
 print pnt.id
 pnt.x = values[1]
 print pnt.x
 pnt.y = values[2]
 print pnt.y

 if ID == -1:

 ID = pnt.id
 # Add the point to the feature's array of points.
 # If the ID has changed create a new feature
 if ID != pnt.id:

 # Create a new row, or feature, in the feature class.
 feat = cur.NewRow()
 # Set the geometry of the new feature to the array of points
 feat.shape = lineArray
 # Insert the feature
 cur.InsertRow(feat)
 lineArray.RemoveAll()

 lineArray.add(pnt)
 ID = pnt.id
except:
 print GP.GetMessages(2)

Below is an example of a file that may be processed by this script.
The file has a blank line at the end to ensure all inputs are used:
1;-61845879.0968;45047635.4861
1;-3976119.96791;46073695.0451
1;1154177.8272;-25134838.3511
1;-62051091.0086;-26160897.9101
2;17365918.8598;44431999.7507
2;39939229.1582;45252847.3979
2;41170500.6291;27194199.1591
2;17981554.5952;27809834.8945
3;17365918.8598;44431999.7507
3;15519011.6535;11598093.8619
3;52046731.9547;13034577.2446
3;52867579.6019;-16105514.2317
3;17160706.948;-16515938.0553

That file is similar to the one in Exercise 4.

The spatial reference for a feature class describes its coordinate system (for example, geographic, UTM, and State Plane), its spatial domain, and its precision.The spatial domain is best described as the allowable coordinate range for x,y coordinates, m- (measure) values, and z-values.The precision de​scribes the number of system units per one unit of measure.
An array of points is not necessary when writing point features. A single point object is used to set the geometry of a point feature.

The geoprocessor validates all geometries before they are written to a feature class. Issues such as incorrect ring orientation and self-intersecting polygons, among others, are corrected when the geometry is simplified before its insertion. The geoprocessor will not write invalid geometry.

Setting a cursor’s spatial reference
By default, the spatial reference of the geometry returned from a search cursor or set by an update or insert cursor is the same as the feature class referenced by the cursor. A different spatial reference for the input or output features may be specified when the cursor is created. In the case of a search cursor, specifying a spatial reference that is different from the spatial reference of the input feature class will result in geometries that are projected to the cursor’s spatial reference. The example below has a point feature class with a coordinate system of Univer​sal Transverse Mercator (UTM) zone 21 North, defined in its spatial reference. The script will produce a text file with the coordinates of the points in decimal degrees.

import win32com.client, sys
Create the geoprocessor object
GP = win32com.client.Dispatch("esriGeoprocessing.GPDispatch.1")

Describe a feature class with a geographic coordinate system
desc = GP.Describe("D:/St_Johns/data.mdb/latlongbnd")

Create search cursor. Use the spatial reference object from the # described feature class so geometries are returned in decimal degrees. rows = GP.SearchCursor("D:/St_Johns/data.mdb/buildings", "",

desc.SpatialReference)
row = rows.Next()

Open the file for output. This also creates the file if it does not exist.
out = open(sys.argv[1],"w")

Print the coordinates of each building point feature

while row:
 # Create the geometry object
 feat = row.shape
 # Get the geometry's point object.
 pnt = feat.GetPart()
 # Write the XY coordinate to the output file
 out.write(str(pnt.x) + ";" + str(pnt.y) + "\n")
 row = rows.Next()

Close the output file
out.close()

Setting the spatial reference of an insert or update cursor is required when the coordinate system of the input geometries is different from the referenced feature class. Defining an insert or update cursor’s spatial reference allows the cursor to project the coordinates on the fly before they are actually written to the feature class. A script that writes geographic Global Positioning System (GPS) coordi​nates to a feature class with a State Plane Coordinate System is an ideal example of when to set a cursor’s spatial reference.

When working in a Python editor, such as PythonWin, you may need to clean up object references to remove dataset locks set by cursors. Use the gc (garbage collection) module in the Interactive window to control when unused objects are removed and/or explicitly delete references within your script.
Other scripting languages have different functions or statements for undoing referencing to objects. For example, VBScript uses the Set state​ment to release an object by setting it to Nothing. For more information regarding object handling, refer to the reference of the language you are using.
Locking
An edit session in ArcMap will apply a shared lock to data during the edit session. An exclusive lock is applied when edits are saved. A dataset is not editable if an exclusive lock already exists.
Insert and update cursors honor table locks set by ArcGIS. Locks prevent mul​tiple processes from changing the same table at the same time. There are two types of locks—shared and exclusive. A shared lock is applied anytime a table or dataset is accessed. Multiple shared locks can exist for a table, but no exclusive locks are permitted if a shared lock exists. Displaying a feature class in ArcMap or previewing a table in ArcCatalog are examples of when a shared lock would be applied. Exclusive locks are applied when changes are made to a table or feature class. Editing and saving a feature class in ArcMap, changing a table’s schema in ArcCatalog or using an insert cursor on a shapefile in PythonWin are examples of when an exclusive lock is applied by ArcGIS.

Update and insert cursors cannot be created for a table or feature class if an exclusive lock exists for that dataset. The UpdateCursor or InsertCursor methods will return an error stating that the methods failed because an exclusive lock exists for the dataset. If these methods successfully create a cursor, they will apply an exclusive lock on the dataset, so two scripts may not create an update or insert cursor on the same dataset.

Locks persist until the application or script releases a dataset, either by closing or releasing the cursor object explicitly. In a script, the cursor object should be deleted so the exclusive lock it placed on the dataset is released. Otherwise, all other applications or scripts could be unnecessarily prevented from accessing a dataset. The sample below shows how to open an update cursor and release it. An error handler is used to check if the UpdateCursor method fails because of another exclusive lock on the table.

Create update cursor for feature class

try:

 rows = GP.UpdateCursor("D:/St_Johns/data.mdb/roads")

 row = rows.Next()

 # Update the field used in buffer so the distance is based on the road

 # type. Road type is either 1, 2, 3 or 4. Distance is in meters.

 while row:

 row.buffer_distance = row.road_type * 100

 rows.UpdateRow(row)

 row = rows.Next()

Delete the row and cursor

 del row, rows

except:

 if not GP.GetMessages() == "":

 GP.AddMessage(GP.GetMessages(2))

 if row:

 del row

 if rows:

 del rows

