
DATA MODELS in DATABASE MANAGEMENT

E. F. Codd
IBM Research Laboratory

San Jose, California 95193

i WHAT IS A DATA MODEL?

It is a combination of three components:

i) a collection of data structure types (the
building blocks of any database that conforms to
the model);
2) a collection of operators or inferencing rules,
which can be applied to any valid instances of the
data types listed in (i), to retrieve or derive
data from any parts of those structures in any
combinations desired;
3) a collection of general integrity rules, which
implicitly or explicitly define the set of
consistent database states or changes of state or
both -- these rules may sometimes be expressed as
insert-update-delete rules.

Note that in any particular application of a data
model it may be necessary to impose further
(application-specific) integrity constraints, and
thereby define a smaller set of consistent
database states or changes of state. Note also
that a database system must normally permit states
other than the consistent ones to exist
transiently during the execution of a program. It
is imperative that the program tell the system at
which steps it is permissible for the system to
check integrity. There may exist programming
languages which permit the intermixing of
integrity assertions and commands, but I do not
know of any (other than database sublanguages)
which permit the specification of integrity points
at which a set of community-specified integrity
rules are to be checked.

Numerous authors appear to think of a data model
as nothing more than a collection of data
structure types. This is like trying to
understand the way the human body functions by
studying anatomy but omitting physiology. The
operators and integrity rules (items 2,3 in the
definition above) are essential to any

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and /o r specific permission.

© 1980 A~M 0-89791-031-1/80/0600-0112 $00.75

understanding of how the structures behave. In
comparing data models people often ignore the
operators and integrity rules altogether. When
this occurs, the resulting comparisons run the
risk of being meaningless.

A flagrant example of such a comparison is the
statement in a panel discussion on Standards in
ACM SIGMOD 1979 (recorded in the Supplement to the
Proceedings, page 55): "the relational model is
considered to be a constrained version of the flat
file data model." What are the operations that
are allowed on flat files? What are the general
integrity constraints on flat files? Is there
even a generally accepted definition of the
structure of flat files that is sufficiently
precise so that we can tell for sure whether a
flat file can contain records of more than one
type?

Note that the authors of many of the data models
of the past five years defined the data structures
only, omitting the operators and integrity rules.
Such models should therefore be regarded as
partial or incomplete data models.

2 PURPOSES OF A DATA MODEL

A data model may be used in any of the following
ways:

i) as a tool for specifying the kinds of data and
data organization that are permissible in a
specific database;
2) as a basis for developing a general design
methodology for databases;
3) as a basis for coping with evolution of
databases so as to have minimal logical impact on
existing application programs and terminal
activities;
4) as a basis for the development of families of
very high level languages for query and data
manipulation;
5) as a focus for DBMS architecture;
6) as a vehicle for research into the behavioral
properties of alternative organizations of data.

Re item 4), a data model need not (and probably
should not) dictate a single language for data
manipulation and query, since different kinds of
users are likely to need different kinds of
languages. The operators or inference rules
should, however, provide a yardstick of
manipulative and query power.

112

The extent to which data models have influenced
the field of database management can be seen by
observing the new database systems (experimental
and product) that have been developed during the
last ten years. It is hard to find one that is
not based on either the CODASYL network model or
the relational model. The number of CODASYL
implementations and installations is often
attributed (and I think correctly) to a desire to
conform to a committee-defined data definition
language. However~ this raison d'etre certainly
does not apply to existing relational systems.

The increasingly widespread use of the relational
model as a vehicle for logical database design
(regardless of the target database management
system by which the data is to be ultimately
managed) provides additional evidence of the
impact of data models on the database field.
Substantial developments in the theory of database
structure have been triggered by the work on
normalization of relations in the relational

model.

The relational model has also spurred vigorous and
widespread research into techniques for optimizing
the execution of statements in very high level
database languages. Other models are seldom, if
ever, used for such investigations, because their
high level languages (when such exist -- and I
know of only one that has been implemented) are
necessarily more complicated.

Finally, it appears that database models have
influenced programming language research,
providing early examples of data abstractions.
Data models have paved the way for the much
clearer separation of semantic issues from
implementation issues in programming languages.
Data models can also be expected to bring about a
belated recognition that general purpose
programming languages need to distinguish shared
variables from private variables.

3 HISTORY OF DATA MODEL DEVELOPMENT

As of 1979, some 40 or more data models (mostly
incomplete in the sense defined above) have been
proposed for the management of formatted data.
The first such data model to be developed was the
relational model (developed in 1969). Many people
have the erroneous impression that the
hierarchical and network models preceded the
relational model. This is due to a confusion
between language specification and implementation
on the one hand and data models on the other.
Hierarchical and network systems were developed
prior to 1970, but it was not until 1973 that data
models for these systems were defined. It is a
little known fact that the hierarchic model
(incomplete as it is) was defined by a process of
abstraction from IBM's IMS. Similarly, the
network model (incomplete as it is) was defined by
abstraction from the CODASYL DBTG language
proposals of 1969. The purpose of these
definitions was to provide a basis for comparing
the three approaches on a common level of
abstraction. Thus, hierarchic and network systems
preceded the hierarchic and network models,
whereas relational systems came after the
relational model and used the model as a
foundation.

4 COMMON MISUNDERSTANDINGS

Many people fail to separate in their minds
different levels of abstraction. A specific
example of this is the failure to realize that
tuples are at a higher level of abstraction than
records (one is not allowed to use the contiguity
of components of tuples, whereas one can use the
contiguity of fields in a record).

Likewise, primary keys (whether they have
system-controlled surrogates or user-controlled
identifiers as values) are at a higher level than
pointers. A particular occurrence of a value V of
a primary key makes reference to all other
occurrences of V in the database that are drawn
from the domain of that primary key. Surrogates
have the property that they are distinct if they
represent distinct objects in the real world.
They are at a higher level than DBTG database
keys, which are record identifiers that are
distinct for distinct records. Note that there
may be two or more records describing a single
real world object, in which case there are two or
more database keys corresponding to one surrogate.
Moreover, within one record there may be two or
more surrogates and only one database key.

Another kind of confusion concerns the exclusion
of relations of degree higher than two from the
principal schema. This exclusion is sometimes
claimed to remove all concern for anomalies in
insertion, update, and deletion. To see that this
claim is false one need only compare two
alternative anchored binary schemas for an n-ary
relation R that is known to possess such
anomalies. In the first schema there are n binary
relations, each corresponding to one of the n
attributes (columns) of R. In the second schema R
is first of all non-loss decomposed (by
projection, for example) into two or more
relations of lesser degree, and then these
relations are converted to anchored binary form.
These two schemas give rise to databases with
entirely different insertion, update, and deletion
behavior.

Whether binary relations (carefully defined with
due regard to possible anomalies) are better than
relations of higher degree (similarly carefully
defined) is a separate question which can be
argued at length. My present position is that
this is largely a subjective question. The
differences between these two views of data are
not significant for formatted databases, in which
the data exhibit a great deal of regularity.
Moreover, operators that generate and manipulate
n-ary relations are unavoidable if one is to
support a variety of user views and a variety of
queries.

A common error is to confuse the concepts of
attribute (column) and domain (the set of all
those values which can ever occur in a given
column). This is perhaps due to the fact that
there is no counterpart to the domain concept in
the most widely used programming languages.
PASCAL may be the first programming language to
incorporate some aspects of the database domain
concept, In a highly shared and dynamic
environment it is important that the system keep

113

track of which columns of which tables draw their
values from any given domain. Otherwise, it is
impossible to write a reliable program to remove
from a database all references to a particular
entity (see Appendix).

Another error is that of identifying the join
operator of the relational model with the links
(sometimes known as fan sets) of the DBTG model.
These concepts are different in ways too numerous
to mention. Suffice it to say that, while the
relational join operates on a pair of tables to
yield a table as the result, DBTG links are not
operators, but merely structures that by
themselves yield nothing (operators must act upon
them if any information is to be extracted from
them or per them).

Different users need to see the database in
different ways. As Smith and Smith point out, the
concepts of entity, relationship, property,
category, and even database value represent
different perceptions of common abstract objects.
A data model that does not permit a relationship
to be viewed as an entity is clearly inadequate to
support these different perceptions (several such
models have been proposed).

Recent investigations into semantic data models
represent an important contribution to the
understanding of the meaning of data in formatted
databases. However, this work is sorely in need
of some objective criteria for completeness:
i.e., knowing when to stop. At present, this is a
matter of taste.

5 THE FUTURE

The subject of data modeling will be a fertile
area for research, development, and application
for many years to come. This is due principally
to the fact that the meaning of data and the
manipulation of this meaning are still so poorly
understood. Further, the impact of data modeling
on database management will continue to be high,
affecting both the design of databases and the
design of database management systems. Gradually,
designers are becoming aware of the need for very
high level data sublanguages:

I) to support efficient communication of data
between distributed databases;
2) to enable the system to determine access
strategy in the face of data representation which
is subject to dynamic change from time to time
(System R does this).

If a user at one node needs a collection of
records from another node and he is able to
specify that collection in a single statement, it
is absurd for him to engage in a sequence of
single record requests, each followed by single
record replies. One reason the relational model
is in such a dominant position today is that, when
originally introduced, two radically different,
very high level (set-oriented) data sublanguages
(the relational algebra and predicate-logic-based
ALPHA) were defined for it. There are now

approximately twenty such data sublanguages for
the relational model. By the end of the 80's it
is reasonable to expect the relational model to
have outstripped every other data model in terms
of the number of users, the number of databases,
and the number of database systems.

APPENDIX: The crucial role of domains

An important part of keeping a relational database
in a state of integrity is keeping track of which
attributes (columns) are defined on which domains.
This information is needed to support the global
removal of all occurrences of a value V where it
occurs as a value from domain D. Here, we are
referring to domain in a semantic, not a
syntactic, sense. That is, we wish to discuss
domains such as supplier serial numbers,
quantities of parts, names of projects, rather
than domains such as alphanumeric character
strings, floating point numbers, and integers.

For example, we may wish to remove supplier Jones
from the database. He happens to have the serial
number 3, and we want to remove his serial number
and descriptive properties from the SUPPLIER
relation, but in addition we want to remove all
occurrences of 3 as a supplier serial number in
all other relations. These latter occurrences are
called referential occurrences, and are to be
replaced by null, except where the integrity
constraints demand that a null is unacceptable, in
which case the tuple containing the component that
references supplier 3 is to be deleted.

Suppose that on a certain day a programmer writes
a program to carry out the removal of any
specified supplier, and this program is based on
his knowledge as of that time concerning which
columns are defined on the supplier serial number
domain. Such a program will fail to operate
correctly, if at a later time one or more new
tables are created that have columns defined on
this domain. Clearly, for such a program to
operate correctly regardless of changes that may
be made in the tables referencing the supplier
serial number domain, the database system must
have the knowledge regarding which columns use
which domains -- and this knowledge must be kept
up-to-date by the system every time a new table is
created, extended (by adding a new column), or
destroyed.

When a new table is declared, accompanying each
column name should be the name of the semantic
domain on which that column is defined. The
system should keep this information in the
column-domain table of the database catalog. The
addition of a new column should be similarly
treated. Corresponding deletions in the
column-domain table should occur as a side effect
of any command that drops tables.

The proposal that all columns on a given domain be
identically named throughout the database is not a
feasible solution, since any table may have more
than one column defined on the given domain.

114

