

Landscape Modeling and Geovisualization Workshop

Effect on Water Quality of Urbanization within the James River Basin

Chris Wood^{1,2,6}, Holly Neill³ and L. Monika Moskal^{4,5}

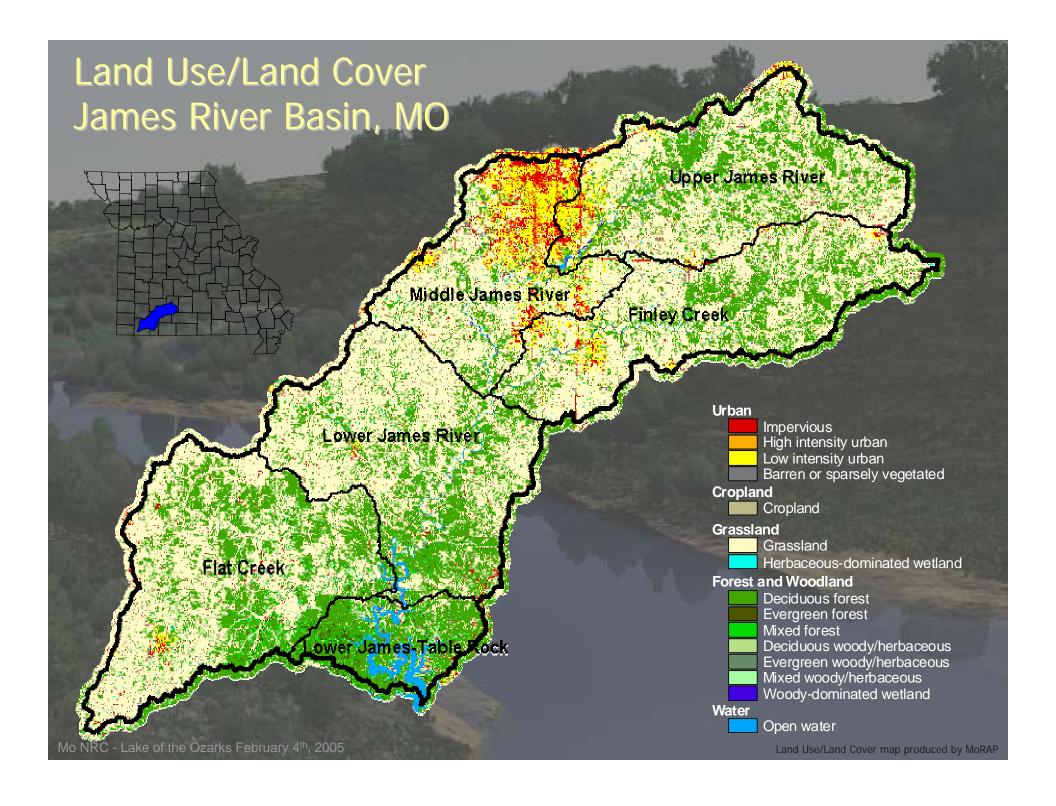
¹Remote Sensing and Geospatial Analysis Laboratory Department of Geography Geology and Planning Southwest Missouri State University http://ozarksgeography.smsu.edu/RSGAL/

²Computer Science Department Southwest Missouri State University

³ James River Basin Partnership http://www.irbp.smsu.edu/

⁴Assistant Professor Department of Geography Geology and Planning Southwest Missouri State University

⁵Director ⁶Graduate Student Assistant (JRBP) Remote Sensing and Geospatial Analysis Laboratory Department of Geography Geology and Planning Southwest Missouri State University

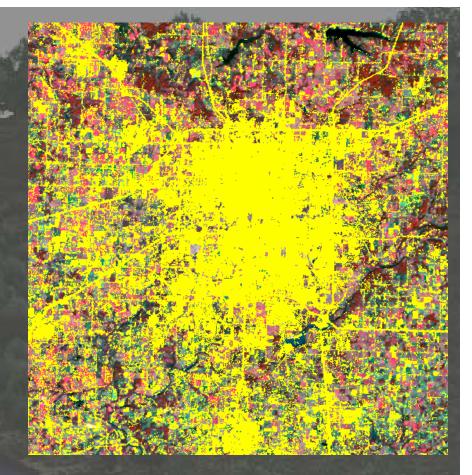


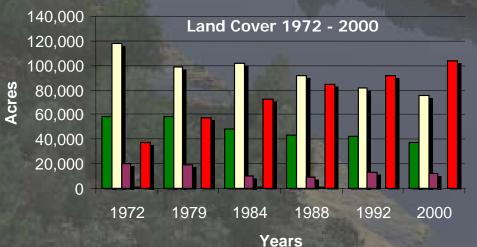
James River Basin, MO

- Located in southwest Missouri
- James River flows southwest through the basin
- Springfield, in the north, largest urban area within the basin
- James River Basin Partnership
 (JRBP) is an autonomous
 not-for-profit organization working to protect and improve the water quality in springs, stream, rivers and lakes within the basin
- Grant funds provided to JRBP for non-point source conservation programs are being used for educational and restoration programs within the basin
- Overall goal of improving water quality by addressing non-point source pollution.

Urban Growth of Springfield, MO

- Springfield is amongst the fastest growing urban areas in the country
- Population change of Springfield and surrounding areas:
 - 1972 Population
 - Greene Co. (163,400)
 - Christian Co. (20,500)
 - 1990 Population
 - Greene Co. (207,949)
 - Springfield (141,115)
 - Christian Co. (32,644)
 - Ozark (5,118), Nixa (5,131)
 - 2000 Population
 - Greene Co.
 - Springfield (151,580)
 - Christian Co. (54,285)
 - Ozark (9,665), Nixa (12,124)
- Concerned with the effect of this urban sprawl on surrounding environment
- How to translate measured effects into a medium that could be used to educate the general public

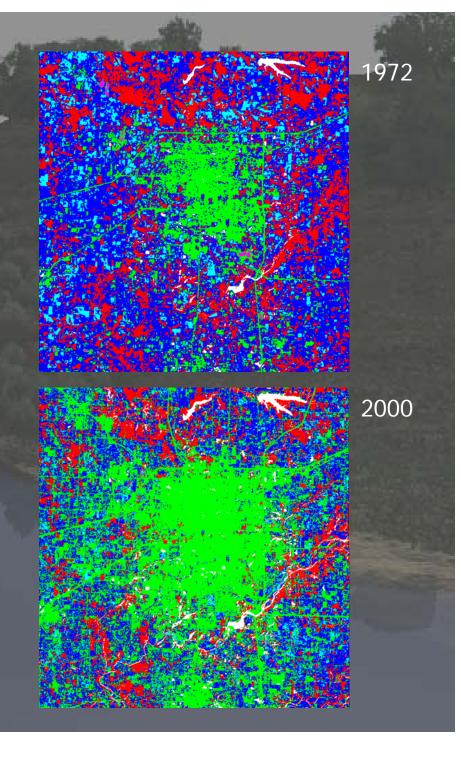

Springfield, MO


1972

36,996 Acres of urban

2000

103,567 Acres of urban (11,504 acre increase)



- Forest
- Grassland
- Cropland
- Bare
- Urban

Urban and land cover change results from MoRAP

- LandSat Imagery for Springfield covering various 6 years within [1972 – 2000]
- Imagery classified according to various land-use, land-cover types
- Concerned with increase in urbanization and decrease in forested areas throughout this period

Effect of Urban Growth

- James River on 'bad' (impaired waterways) EPA list
- The continued urban growth in the area has had significant effect on surrounding environment
- Specifically the water quality in surrounding water ways is impaired

Measuring Water Quality Change

- Historical water quality data does not date back that far
- In fact water quality data for selected locations only available from 2002 onwards
- Change was assumed to be linear and back projected to 1972

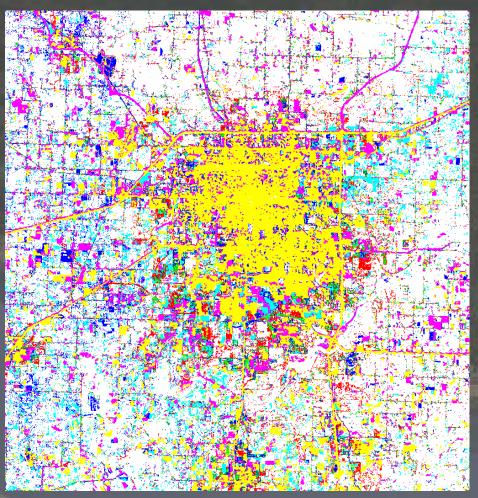
Visualizing Urban Growth Effects

- Perform temporal analysis on study area
- Calculate relevant landscape metrics
- Progress from 'standard' temporal change analysis to generating moving animations; producing 3D visualizations of change within the study area

Temporal Analysis

- Various Landsat Images of the study area were classified according to land use or land coverage
 - water, grassland, forest, urban, cropland, bare or sparsely populated
- Compared to determine change in land cover and land use over the last 30 years

Image Reclassification


- When considering only urban growth, the other classes are not required
- LandSat images were re-classified to binary form of either "Urban" or "Not Urban"
- To allow images to be cascaded such that from any one point on the final image, one can determine exactly how it has changed over time – a matrix for the binary re-classification was developed (shown on next slide)
- Fortunately in this case, once a pixel became urban it never changed after that
- Each image was re-classified and cascaded, resulting in a final temporal analysis image

Binary Re-classification Matrix

1972		1979		1984		1988		1992		2000		
Not	0	Not	2	Not	8	Not	32	Not	128	Not	512	
Urban	1	Urban	4	Urban	16	Urban	64	Urban	256	Urban	1024	
1	LINE			Tools		350.5				3		
1972		1979		1984		1988		1992		2000		Scaled
Not	0	Not	2	Not	10	Not	42	Not	170	Not	682	0
Not	0	Not	2	Not	10	Not	42	Not	170	Urban	1194	1
Not	0	Not	2	Not	10	Not	42	Urban	298	Urban	1322	2
Not	0	Not	2	Not	10	Urban	74	Urban	330	Urban	1354	3
Not	0	Not	2	Urban	18	Urban	82	Urban	338	Urban	1362	4
Not	0	Urban	4	Urban	20	Urban	84	Urban	340	Urban	1364	5
Urban	1	Urban	5	Urban	21	Urban	85	Urban	341	Urban	1365	6
	THE STATE OF											

The Case For Animation

- It is easily seen that the final classification image is very difficult to understand and is not visually aesthetic
- How to display something that has a 4D component in/on a 2D (or 3D) medium?
- By visualizing the reclassified image in another manner the change in the study area becomes easier to understand

Re-classified Urban Growth Image

Final Animations 2000

Urban visualizations conclusions

- The visualizations show temporal change and the dates are recorded in top right-hand corner
- The next step is to develop a similar overlay on top of Lake Springfield with the subjective water quality assessments
- To develop ecosystems that show grassland or forested areas when the land is not urban as well as houses when the land is urban requires incredible amount of computer resources
- It would be nice to have non-urban ecosystems in the animations, the rendering process will be exponentially increased, but it is possible
- Another possible alteration is draping facades over the buildings rather than using the default buildings provided by VNS, again considerably increasing rendering time

Acknowledgments

http://ozarksgeography.smsu.edu/RSGAL/

Mo NRC - Lake of the Ozarks February 4th, 2005