
ACO and other (meta)heuristics for CO

32

Outline

Notes on combinatorial optimization and algorithmic
complexity

Construction and modification metaheuristics: two
complementary ways of searching a solution space

Finally, Ant Colony Optimization explained

Other population-based metaheuristics for
optimization problems: Genetic Algorithms, Cultural
Algorithms, Cross-entropy

Single agent metaheuristics: Local Search, Tabu
Search, Rollout algorithms

33

Ant Colony Optimization metaheuristic

Reverse engineering of the mechanisms behind the ant
colony shortest path behavior [Dorigo et al., 1991]

Multi-agent architecture based on stigmergy. The
agents, called ants are an abstraction and an engineered
version of real ants
Target: solution of combinatorial optimization problems
(static and dynamic, centralized and distributed)

General idea: repeated construction of solutions using a
stochastic policy, observation of the results, and updating of
real-valued variables used in turn by the decision policy in
order to bias subsequent solution construction toward the
most promising areas of the search space

Before proceeding, let’s understand first what a metaheuristic is,
and which is the class of problems ACO is intended for

34

Algorithmic complexity

The time complexity function of an algorithm for a given
problem indicates, for each input size n, the maximum time
the algorithm needs to find a solution to an instance of that
size (worst-case time complexity). For instance, a
polynomial time algorithm has time complexity O(g(n))
where g is a polynomial function. If the time complexity
cannot be bounded by a polynomial the algorithm is said
exponential [Garey and Johnson, 1979]

A problem is said intractable if there is no polynomial time
algorithm able to solve it

For the so called NP-hard class of optimization problems
exact algorithms need, in the worst case, exponential time to
find the optimum (e.g., Traveling salesman, quadratic
assignment, vehicle routing, graph coloring, satisfiability. . .)

Exact algorithms are guaranteed to find the optimal
solution and to prove its optimality for every finite size
instance of the combinatorial problem in bounded,
instance-dependent time

35

Heuristics and metaheuristics
For most NP-hard problems of interest the performance of
exact algorithms is not satisfactory. Huge computational
times are required sometimes even for small instances.
It is therefore necessary in practice to trade optimality for
efficiency.Heuristic methods seek to obtain good solutions
at relatively low computational cost without being able to
guarantee the optimality of the solution

Asymptotic convergence can be often proved for specific
cases. An algorithm that comes with the formal proof that it
returns a solution worse than the optimal one by at most
some fixed value or factor is anapproximation algorithm
A metaheuristic is a high-level strategy which guides other
(problem-specific) heuristics to search for solutions in a
possibly wide set of problem domains (e.g., [Glover and
Kochenber, 2002]. A metaheuristic can be seen as a
general algorithmic framework which can be applied to
different optimization problems with relatively few
modifications to make them adapted to the specific problem
(e.g., Tabu Search, Simulated Annealing, Iterated Local
Search, Evolutionary Computation, ACO) 36

A trivial example of real-life metaheuristic

Meta-strategy: Before buying a new item (e.g., a new
laptop or a new pair of shoes), it is mandatory to
check at least 5 shops and collect related information

The high-level strategy is independent from the
specific item and doesn’t tell anything about how the
shops are actually selected and how the final decision
is taken. We therefore need at least two additional
heuristics for the specific tasks of selecting the shop
and taking the final decision

Can you think of examples of metaheuristics that you
adopt in your real-life and/or that are adopted in your
scientific field of interest? Do you think it is useful in
general to make use of this two-level reasoning structure?

37

Combinatorial problems

Instance of a combinatorial optimization problem: is a pair
(S, J), where S is a finite set of feasible solutions, and J
is a function that associates a real cost to each feasible
solution, J : S → R. The problem consists in finding the
element s∗ ∈ S which minimizes the function J :

s∗ = arg min
s∈S

J(s).

Given the finiteness of the set S, the minimum of J on S
indeed exists for at least one element
In the case of continuous optimization S is a subset of R

n

and the global minimum might not exist (if the set is open)

A combinatorial optimization problem is a set of instances of
an optimization problem, usually all sharing some core
properties (e.g., species’ genome and individual’s DNA)

A solution is a feasible solution in the set S.
If mapping J changes during the execution of the algorithm,
J ≡ J(s, t), the problem is dynamic 38

Characteristics of a solution

Given the finiteness of the solution set, this requires that the
set of elements that can be part of a solution is also finite.
Let’s call them solution components
Example: find the shortest path connecting two end-points.

S = {(1237), (137), (13467), (123467), (1467), (1567)}

is the loopless solution set. The cost of a solution can be the
sum of the costs of the single links. The set C of the solution
components is: C = {1, 2, 3, 4, 5, 6, 7}

c 1

c 3

c 5

c 4

c 9

c 2

c 6

c 7

c 8

c 10

Start

End

1

2

4

5

6

7

3

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �

	 	 		 	 		 	 		 	 		 	 	

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

39

TSP: constrained shortest path

Traveling Salesman Problem: the minimal cost closed circuit
touching all the nodes

NP-hard, very fameus, loads of applications, studied since
about 1850
For n cities→ n! solutions (n=10, n! = 3,628,800)

A solution is a ciclic permutation of cities: s = (132451).
J =

∑

P
dij , where dij are the distances, or, more in

general, the link costs: J = d13 + d32 + d24 + d45 + d51

1

2

3

4

5

� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �
� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �
	 	 		 	 		 	 		 	 		 	 	

40

QAP: quadratic assignment problem
Quadratic Assignment Problem: minimizing the assignment
of activities ai ∈ A to locations lj ∈ L

Extension of TSP, which can be seen as a problem of
assigning a city to a position from 1 to n (bipartite
assignment problems). NP-hard but more difficult than TSP
A solution is a complete assignment:
s = (a1, l3), (a2, l4), (a3, l5), (a4, l1), (a5, l2)

Every possible pair ailj has a cost. The objective is to
minimizing the sum of all costs: J(s) =

∑

ai,lj∈s cij , where
cij is the cost of assigning activities ai to location lj .
J(s) = c13 + c24 + c35 + c41 + c52.

LocationsActivities

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �

	 	 		 	 		 	 		 	 		 	 	

� � �� � �� � �� � �� � �

41

Construction heuristics

Starting from an empty partial solution x0 = ∅, a
complete solution s ∈ S is incrementally built by
adding one-at-a-time a new component c ∈ C to the
partial solution.

The generic iteration (also termed transition) of a
construction process can be described as:

xj = {c1, c2, . . . , cj} → xj+1 = {c1, c2, . . . , cj , cj+1}, ci ∈ C, ∀i ∈ {1, 2, . . . , |C|},
(1)

where xj ∈ X ′ = ℘(C) is a partial solution of
cardinality (length) j, j ≤ |C| <∞.

Solution construction: sequential decision process

42

Generic construction algorithm

procedure Generic construction algorithm()
t← 0;
xt ← ∅;
while (xt /∈ S ∨ ¬stopping criterion)

ct ← select component(C| xt);
xt+1 ← add component(xt, ct);
t← t + 1;

end while
return xt;

43

Construction illustrated

S

Ω

tct(x)Cxt xs

C

π xt+1

Step-by-step dependence on all the past decisions:

P (ct) = P
(

ct | (c
1
k, c

2
k+1, . . . , c

t−1

k+t−1
)
)

,

Appropriate when the cost J(s) is a combination of
contributions each one related to the fact that a
particular component cj is included into the partial
solution solution xj

44

State diagram of the sequential process

45

Modification methods

Construction algorithms work on the set of solution
components

Modification strategies act upon the search space of
the complete solutions: start with a complete solution
and proceed by modifications of it

Construction methods make use of an incremental
local view of a solution, while modification
approaches are based on a global view of a solution

This class numbers some of the most effective
algorithms and heuristics for combinatorial problems

46

Neighborhood of a solution
There is no assigned metric as in the continuous. The
notion of proximity is arbitrary
A neighborhood is a mapping N that associates to each
feasible solution s of an optimization problem a set N (s) of
other feasible solutions. The mapping can be conveniently
expressed in terms of a rule M that, given s, allows the
definition of the set of solutions belonging to the
neighborhood by applying some modification procedure on
the components of s:

N (s) = {s′ : s′ ∈ S ∧ s′ can be obtained from s from M(s)}.

N can be random but only those mappings preserving a
certain degree of correlation between the value J(s)
associated to the point s and the values associated to the
points in N (s) are really meaningful.
Measure of closeness among the values associated to the
solutions: if some components of st are fixed, the values of
the solutions generated by modifying other components
through M should be correlated to the value of st.

47

Local search methods

Look for a solution locally optimal with respect to the
defined neighborhood structure

They are based on the iteration of the process of
neighborhood examination until no further
improvements are found.

The most effective heuristics [Aarts and Lenstra,
1997]

48

Generic local search algorithm

procedure Modification heuristic()
define neighborhood structure();
s← get initial solution(S);
sbest ← s;
while (¬ stopping criterion)

s′ ← select solution from neighborhood(N (s));
if (accept solution(s′))

s← s′;
if (s < sbest)

sbest ← s;
end if

end if
end while

return sbest;

49

Main design issues

Neighborhood structure

Generation of the initial solution

Selection of a candidate solution from the
neighborhood of the current solution

Criterion to accept or reject such selected solution

50

