Swarm Intelligence -Introduction

Thiemo Krink

EVALife Group, Dept. of Computer Science, University of Aarhus

Why do we need new computing techniques?

The computer revolution changed human societies:

- communication
- transportation
- industrial production
- administration, writing, and bookkeeping
- technological advances / science
- entertainment

However, some problems cannot be tackled with traditional hardware and software!

Drawback of traditional techniques

- Computing tasks have to be
 - well-defined
 - fairly predictable
 - computable in reasonable time with serial computers

Hard problems

Well-defined, but computational hard problems

- NP hard problems (Travelling Salesman Problem)
- Action-response planning (Chess playing)

Hard problems

Fuzzy problems

- intelligent human-machine interaction
- natural language understanding

Example: Fuzziness in sound processing

"E-vo-lu-tio-na-ry Com-pu-ta-tion"

"E-vo-lu-tio-na-ry Com-pu-ta-tion"

Hard problems

Hardly predictable and dynamic problems

- real-world autonomous robots
- management and business planning

Japanese piano robot

Trade at the stock exchange

What are the alternatives?

- DNA based computing (chemical computation)
- Quantum computing (quantum-physical computation)
- Bio-computing (simulation of biological mechanisms)

Brains and Artificial Neural Networks

The basic unit - the reurone

Vertical cut through the neocortex of a cat

Properties of the brain

- holistic
- parallel
- associative
- learning
- redundancy
- self-organisation

Functional units of the human brain

Evolution and Evolutionary Algorithms

Evolution and Evolutionary Algorithms

EAs - Optimization without knowledge

The task: Design a bent tube with a maximum flow

Goal: water flow $\mathbf{f}(x_1, x_2, \dots, x_9) = f_{max}$

Foundations of Bio-Computing

	Inspiration	Identification	Application	Verification
Natural scienœs				
Complexity theory				
Adaptive algorithms				
Artificial Life				
Swarm Intelligence				

Fields of application

- Robotics / Artificial Intelligence
- Process optimisation / Staff scheduling
- Telecommunication companies
- Entertainment

What are the limitations

- biology makes compromises between different goals
- biology sometimes fails
- some natural mechanisms are not well understood
- well-defined problems can be solved by better means

What is Swarm Intelligence (SI)?

"The emergent collective intelligence of groups of simple agents." (Bonabeau et al, 1999)

Examples

- group foraging of social insects
- cooperative transportation
- division of labour
- nest-building of social insects
- collective sorting and clustering

Why is Swarm Intelligence interesting for IT? Analogies in IT and social insects

- distributed system of interacting autonomus agents
- goals: performance optimization and robustness
- self-organized control and cooperation (decentralized)
- division of labour and distributed task allocation
- indirect interactions

How can we design SI systems?

The 3 step process

- **identification of analogies**: in swarm biology and IT systems
- **understanding**: computer modelling of <u>realistic</u> swarm biology
- **engineering**: model simplification and tuning for IT applications

Introduction

Some observations...

Nest-building in social wasps

Group defence in honey bees

Ants

Why are ants interesting?

- ants solve complex tasks by simple local means
- ant productivity is better than the sum of their single activities
- ants are 'grand masters' in search and exploitation

Which mechanisms are important?

- cooperation and division of labour
- adaptive task allocation
- work stimulation by cultivation
- pheromones

What are there principal mechanisms of natural organization?

Self-organization

'Self-organization is a set of dynamical mechanisms whereby structures appear at the global level of a system from interactions of its lower-level components.'

(Bonabeau et al, in Swarm Intelligence, 1999)

The four bases of self-organization

- positive feedback (amplification)
- negative feedback (for counter-balance and stabilization)
- amplification of fluctuations (randomness, errors, random walks)
- multiple interactions

Characteristics of self-organized systems

- structure emerging from a homogeneous startup state
- multistability coexistence of many stable states
- state transitions with a dramatical change of the system behaviour

Self-organization in a termite simulation

Self-organization in a termite simulation

(Mitchel Resnick, 1994)

Self-organization in honey bee nest building

Self-organization in honey bee nest building

- the queen moves randomly over the combs
- eggs are more likely to be layed in the neighbourhood of brood
- honey and pollen are deposited randomly in empty cells
- four times more honey is brought to the hive than pollen
- removal ratios for honey: 0.95; pollen: 0.6
- removal of honey and pollen is proportional to the number of surrounding cells containing brood

Introduction

Introduction

Stigmergy

Stigmergy: *stigma* (sting) + *ergon* (work)

= 'stimulation by work'

Characteristics of stigmergy

- indirect agent interaction modification of the environment
- environmental modification serves as external memory
- work can be continued by any individual
- the same, simple, behavioural rules can create different designs according to the environmental state

Stigmergy in termite nest building

Stigmergy in spider webs

Stage I

Stoge 2

Stage 3

Stage 4

Swarm Intelligenæ

Introduction

Stigmergy in spider webs

Spiral analysis - Real spider vs simulation

A. diadematus

Virtual spider

Summary

Motivation and methods in biologically inspired IT

- there are analogies in distributed computing and social insects
- biology has found solution to hard computational problems
- biologically inspired computing requires:
 - identification of analogies
 - computer modelling of biological mechanisms
 - adaptation of biological mechanisms for IT applications

Summary

Two principles in swarm intelligence

- self-organization is based on:
 - activity amplification by positive feedback
 - activity balancing by negative feedback
 - amplification of random fluctuations
 - multiple interactions
- stigmergy stimulation by work is based on:
 - work as behavioural response to the environmental state
 - an environment that serves as a work state memory
 - work that does not depend on specific agents