One-minute responses

- Q: Could you go over silent sites briefly?
- A:
 - CGU, CGC, CGA, CGG all mean Arginine
 - The third position does not matter ("is silent")
 - Over evolutionary time, A, C, G and T will all appear here
 - Such positions evolve rapidly:
 - * Useful for sorting out closely related taxa
 - * Become randomized between distantly related taxa

Phylogeny methods

- Four major approaches to phylogeny inference
 - Parsimony
 - Distance
 - The statistically complex siblings:
 - * Maximum likelihood
 - * Bayesian inference

Parsimony methods

- (Philosophical) Principle of Parsimony: Make as few assumptions as possible
- (Phylogenetic) Principle of Parsimony: Prefer the tree requiring the fewest evolutionary changes
- Assumes that changes are fairly rare and evenly distributed

Parsimony methods

- Advantages of parsimony:
 - No explicit mutational model required
 - Applicable to the widest variety of data-including morphological traits (all we have for fossils)
 - Moderately fast
- Disadvantages:
 - No explicit mutational model possible
 - Long branch attraction
 - Limited ability to put error bars on phylogeny estimate

Practice problem-parsimony

Taxon	1	2	3	4	5
Taxon A	Α	Α	C	G	Α
В	T	Α	Α	T	T
C	T	Α	Α	G	Α
D	Α	C	C	G	Т

How many changes are needed on each tree topology?

Which topology is preferred by parsimony?

Practice problem-parsimony

Taxon	1	2	3	4	5
A	Α	Α	C	G	Α
В	Т	Α	Α	Т	Т
C	Т				
D		C			

How many changes are needed on each tree topology? 8, 7, 6

Which topology is preferred by parsimony? $Third\ topology$

Parsimony methods

- Felsenstein showed a four-tip tree which gives inconsistent results with parsimony
- "Inconsistent:" the more data you have, the more likely you are to get the wrong answer
- With infinite data you would be 100% sure to get the wrong answer

Long branch attraction

- When the data come from the left-hand tree, parsimony prefers the right-hand tree
- Two convergent changes on the long branches are more likely than a single change on the short branches
- This violates the basic principle of parsimony: prefer the solution with the fewest changes
- Fast-evolving sites and data sets are particularly bad for parsimony

Betting on your trees

- Ken Rice makes parsimony trees of human G-protein coupled receptors
 - Maximum likelihood much too slow
 - Distance methods didn't perform well
- If they group with:
 - Odor receptors discard
 - Neurotransmitter receptors –
 spend \$2K to find out if they really bind neurotransmitters
- Successful in keeping his job!

G-protein coupled receptor genes

Distance methods

- Transform data into a table of pairwise distances
- Find a tree which fits these distances well
- Different distance methods use different fitting criteria

	Human	Bonobo	Chimp	Gorilla	Orang
Human	_	4	5	8	12
Bonobo	4	_	1	9	14
Chimp	5	1	_	8	14
Gorilla	8	9	8	_	13
Orang	12	14	14	13	_

Distance methods

- For very sparse mutations, counting differences may be good enough
- If some sites have mutated multiple times, this will undercount changes on the longer branches
- We can use a mutational model to obtain corrected distances
- Many models available, from simple to highly complex:
 - Transition/transversion bias
 - Unequal base frequencies
 - Rate variation
 - Invariant sites

UPGMA

- UPGMA (Unweighted Pair-Group Method of Analysis) is a simple distance method
- It assumes a molecular clock and is fragile if clock is wrong, so seldom used anymore
- Its non-clocklike sibling Neighbor-Joining performs better and is very widely used
- I teach UPGMA because it illustrates the principles and is easy

UPGMA rules

- Group together the two most similar species
- Divide their distance evenly across the branches leading to them
- Average their distances to all other species
- Rewrite the distance matrix with the new group and distances
- Repeat until tree is finished
- In case of ties, break arbitrarily or draw as three-way split

	Α	В	C	D	Ε
Α	_	5	1	8	9
В	5	_	4	10	11
C	1	4	-	9	9
D	8	10	9	_	2
Е	9	11	9	2	_

```
В
            D
               Ε
      5
        1
            8
               9
A
В
   5
         4
            10
               11
     4
             9
                9
D
  8
     10
        9
                2
Ε
   9
      11
         9
             2
```

Group A and C to form AC, with branches of length 0.5

```
AC B D E
AC - 4.5 8.5 9
B 4.5 - 10 11
D 8.5 10 - 2
E 9 11 2 -
```

Group D and E to form DE, with branches of length 1.0

Group B with AC to form ABC, with branches of length 2.25

```
ABC DE
ABC - 9.625
DE 9.625 -
```

Group ABC with DE, with branches of length 4.80

Distance methods

Advantages:

- Often very fast (UPGMA and Neighbor-Joining are blindingly fast)
- Can use sophisticated mutational model to obtain distances
- Can be used for data that are intrinsically distances (DNA annealing temperature, immunological cross-reactivity)

• Disadvantages:

- Loss of information by reducing data to distances
- Clocklike versions (UPGMA) are brittle
- Long distances hard to estimate accurately

Maximum-likelihood methods

- Begins with explicit model of evolution
- A candidate tree is evaluated to find how probable the data are given that tree and the model
- For a given topology, we adjust the branch lengths to maximize probability of data given tree
- Necessary to search among all topologies (or as many as we can stand)
- Developed in this department by Joe Felsenstein around 1981

Maximum-likelihood methods

Advantages:

- Can use sophisticated mutational models
- Gives approximate error bars for branch lengths
- Makes full use of all information in the data

• Disadvantages:

- Exposes its mutational model, which can then be criticized (they are always oversimplifications)
- Extremely slow

Bayesian methods

- Hot new topic in phylogenetics
- Assume that we can place a prior distribution on trees
- Wander among possible trees in proportion to their fit to the data
- Result is a cloud of trees
- To assess any given feature, count how often it appears in the cloud
- Example: Where is root of human mtDNA tree?

Bayesian methods

Advantages

- Can use sophisticated mutational models
- Excellent error bars (which parts of the tree can we trust?)
- Prior can help limit search to good trees
- Makes full use of all information in the data

Disadvantages

- Exposes its mutational model, which can then be criticized
- If the search is cut too short, the answer is overly certain
- If the prior distribution is bad, so is the answer
- As slow as likelihood, maybe slower

What are the methods good for?

- Some data force a given method:
 - biometric measurements use parsimony
 - immunological cross-reaction distances use distance method
- Likelihood and Bayesian methods are powerful and accurate, but:
 - Too slow for big data sets
 - Require a detailed model of the mutational process

Consensus trees

What information is common to all of these trees?

How can we clearly represent that information?

Strict consensus

Strict consensus has problems

These trees appear similar, but their strict consensus is a "star" tree with no structure

Majority-rule consensus

Validating phylogenies

- Agreement among methods increases our confidence in our phylogeny
- However, consider this data set:
 Sites supporting human+chimp 51
 Sites supporting gorilla+chimp 49
- All phylogeny methods will prefer human+chimp
- However, the data do not support either tree very strongly

Bootstrap

- The bootstrap is a general method for validating any type of phylogeny inference
- It answers the question: How sensitive are our conclusions to small variations in the data?
- Felsenstein's paper announcing bootstrap is #41 on "most cited papers of all time"!

Bootstrap

- Consider our problem data set:
 Sites supporting human+chimp 51
 Sites supporting gorilla+chimp 49
- Many of the resampled data sets will have 50-50 or 49-51 instead of 51-49.
- The human+chimp branch will not get strong bootstrap support
- This correctly reflects the poor signal of the data

Bootstrap

- The bootstrap assesses how sensitive your results are to random fluctuation in the data
- It does **not** detect violations of your assumptions
- For example:
 - Method assumes a clock, but data are not clocklike
 - Original tree is systematically wrong
 - Bootstrap trees are systematically wrong too!

What do bootstrap values mean?

- Bootstrap values were originally interpreted as percent chance the branch was real
- This was disproven in the 1990's by computer simulation
- High values underestimate support; low values overestimate it

What do bootstrap values mean?

- There is no simple way to go from bootstrap value to percent support
- The relationship depends on number of tips and shape of tree
- Most people use a rough rule of thumb that 85% is a pretty good bootstrap and 65% is a definitely poor one
- It's best to publish the actual values and let readers draw their own conclusions

Other methods of validation

- Maximum likelihood algorithms come with built-in estimates of confidence
- Unfortunately these are only approximate for finite sized data sets
- Many researchers present bootstraps instead because they are more generally understood

Other methods of validation

- Bayesian methods produce a "cloud of trees"
- The trees in the cloud can be treated like a bootstrap sample
- Simulation studies show that this can produce much higher support than bootstrap for the same branches
- There is a hot controversy currently over which method is better
- They answer slightly different questions:
 - Bootstrap: would a slightly different data set have a different best tree?
 - Bayesian support: would a slightly different tree fit this data set almost as well?
- It is easier to see that these are different than to understand how to use each one appropriately!

Ambiguity in trees

- Tree construction may not be possible when:
 - A species arose by hybridization of two other species
 - Genes have been exchanged between distantly related species
 - Different genes in the genome have different histories due to recombination and reassortment
- The programs will still run and a tree will be produced!
- Hybrids often move toward the bottom of the tree, or may cluster with one or the other parent
- Ideally we'd infer a tangled graph, but this problem is HARD

One-minute responses

- Tear off a half-sheet of paper
- Write one line about the lecture:
 - Was anything unclear?
 - Did anything work particularly well?
 - What could be better?
- Leave at the back on your way out