from The Mathematical Experience, by Philip J. Davis
& Reuben Hersh. (1981), Houghton-Mifflin
Company, Boston, MA.

Nonstandard
Analysis

ONSTANDARD ANALYSIS, a new branch of

mathematics invented by the logician Abraham

Robinson, marks a new stage of development in

several famous and ancient paradoxes, Robin-

son revived the notion of the “infinitesimal”—a number

that is infinitely small yet greater than zero. This concept

has roots stretching back into antiquity. To traditional, or

“standard,” analysis it seemed blatantly self-contradictory.

Yet it has been an important tool in mechanics and geome-
try from at least the time of Archimedes.

In the nineteenth century infinitesimals were driven out

237

Selected Topics in Mathematics

of mathematics once and for all, or so it seemed. To meet
the demands of logic the infinitesimal calculus of Isaac
Newton and Gottfried Wilhelm von Leibniz was reformu-
lated by Karl Weierstrass without infinitesimals. Yet today
it is mathematical logic, in its contemporary sophistication
and power, that has revived the infinitesimal and made it
acceptable again. Robinson has in a sense vindicated the
reckless abandon of eighteenth-century mathematics
against the strait-laced rigor of the nineteenth century,
adding a new chapter in the never ending war between
the finite and the infinite, the continuous and the discon-
tinuous.

In the controversies over the infinitesimal that accompa-
nied the development of the calculus, Euclid’s geometry
was the standard against which the moderns were mea-
sured. In Euclid both the infinite and the infinitesimal are
deliberately excluded. We read in Euclid that a point is that
which has position but no magnitude. This definition has
been called meaningless, but perhaps it is just a pledge not
to use infinitesimal arguments. This was a rejection of ear-
lier concepts in Greek thought. The atomism of Derr--
critus had been meant to refer not only to matter but .
to time and space. But then the arguments of Zeno had
made untenable the notion of time as a row of successive
instants, or the line as a row of successive “indivisibles.”
Aristotle, the founder of systematic logic, banished the in-
finitely large or small from geometry.

Here is a typical example of the use of infinitesimal argu-
ments in geometry:

We wish to find the relation between the area of a circle
and its circumference. For simplicity we suppose that the
radius of the circle is 1. Now, the circle can be thought of as
composed of infinitely many straight-line segments, all
equal to each other and infinitely short. The circle is then
the sum of infinitesimal triangles, all of which have altitude
1. For a triangle the area is half the base times the altitude.
Therefore the sum of the areas of the triangles is half the
sum of the bases. But the sum of the areas of the triangles
is the area of the circle, and the sum of the bases of the
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triangles is its circumference, Therefore the area of the cir-
cle of radius 1 is equal to one half its circumference.

This argument, which Euclid would have rejected, was
published in the fifteenth century by Nicholas of Cusa.
The conclusion is of course true, but objections to the ar-
gument are not hard to find. The notion of a triangle with
an infinitely small base is elusive, to say the least. Surely the
base of a triangle must have length either zero or greater
than zero. If it is zero, then the area is zero, and no matter
how many terms we add we can get nothing but zero. On
the other hand, if it is greater than zero, no matter how
small, we will get an infinitely great sum if we add infinitely
many terms. In neither case can we get a circle of finite cir-
cumference as a sum of infinitely many identical pieces.

The essence of this rebuttal is the assertion that even a
very small nonzero number becomes arbitrarily large if it is
added to itself enough times. Because the assertion was
first made explicit by Archimedes, it is called the Archime-
dean property of the real numbers. An infinitesimal, if it
existed, would be precisely a non-Archimedean number: a
number greater than zero, which nevertheless remained
less than 1, say, no matter how (finitely) many times it was
added to itself. Archimedes, working in the tradition of
Aristotle and Euclid, asserted that every number is Archi-
medean: there are no infinitesimals. Archimedes, however,
was also a natural philosopher, an engineer and a physicist.
He used infinitesimals and his physical intuition to solve
problems in the geometry of parabolas. Then, since infini-
tesimals “do not exist,” he gave a “rigorous” proof of his
results, using the “method of exhaustion,” which relies on
an indirect argument and purely finite constructions. The
rigorous proof is given in his treatise On the Quadrature of
the Parabola, which has been known since antiquity. The
use of infinitesimals, which actually served to discover the
answer, is in a paper called “On the Method,” which was
unknown until its sensational discovery in 1906.

Archimedes’ method of exhaustion, which avoids infini-
tesimals, is in spirit close to the “epsilon-delta” method with
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which Weierstrass and his followers in the nineteenth cen-
tury drove infinitesimal methods out of analysis. It is easy
to explain if we refer to our example of the circle as an infi-
nite-sided polygon. We wish to get a logically acceptable
proof of the formula “The area of a circle with a radius of
one unit equals half the circumference,” which we discov-
ered by a logically unacceptable argument.

We reason as follows. The formula asserts the equality of
two quantities associated with a circle with a radius of 1: its
area and half its circumference. Thus if the formula is
false, one of these quantities is larger than the other. Let A
be the positive number obtained by subtracting the smaller
from the larger. Now, we can circumscribe about the circle
a regular polygon with as many sides as we wish. Since the
polygon is composed of a finite number of finite triangles
with altitude 1, we know that its area is half its perimeter.
By making the number of sides sufficiently large we can ar-
range for the polygon's area to differ from the area of the
circle by less than half of A (whatever its value is taken to
be); at the same time the perimeter of the polygon will dif-
fer from the perimeter of the circle by less than half of A.
But then the area and the semiperimeter of the circle must
differ by less than A, which contradicts the suppositi
from which we started. Hence the supposition is impossibic
and A must be zero, as we wished to prove.

This argument is logically impeccable. Compared with
the directness of the first analysis, however, there is some-
thing fussy, even pedantic, about it. After all, if the use of
infinitesimals gives the right answer, must not the argu-
ment be correct in some sense? Even if we cannot justify
the concepts it employs, how can it really be wrong if it
works?

Such a defense of infinitesimals was not made by Archi-
medes. Indeed, in “On the Method" he is careful to explain
that “the fact here stated is not actually demonstrated by
the argument used” and that a rigorous proof had been
published separately. On the other hand, Nicholas of Cusa,
who was a cardinal of the church, preferred the reasoning
by infinite quantities because of his belief that the infinite
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was “the source and means, and at the same time the unat-
tainable goal, of all knowledge.” Nicholas was followed in
his mysticism by Johannes Kepler, one of the founders of
modern science. In a work less well known nowadays than
his discoveries in astronomy, Kepler in 1612 used infinites-
imals to find the best proportions for a wine cask. He was
not troubled by the self-contradictions in his method; he
relied on divine inspiration, and he wrote that “nature
teaches geometry by instinct alone, even without ratiocina-
tion." Moreover, his formulas for the volumes of wine
casks are correct.

The most famous mathematical mystic was no doubt
Blaise Pascal. In answering those of his contemporaries
who objected to reasoning with infinitely small quantities,
Pascal was fond of saying that the heart intervenes to make
the work clear. Pascal looked on the infinitely large and the
infinitely small as mysteries, something that nature has
proposed to man not for him to understand but for him to
admire.

The full flower of infinitesimal reasoning came with the
generations after Pascal: Newton, Leibniz, the Bernoulli
brothers (Jakob and Johann) and Leonhard Euler. The
fundamental theorems of the calculus were found by New-
ton and Leibniz in the 1660s and 1670s. The first textbook
on the calculus was written in 1696 by the Marquis de
L'Hospital, a pupil of Leibniz and Johann Bernoulli. Here
it is stated at the outset as an axiom that two quantities dif-
fering by an infinitesimal can be considered to be equal. In
other words, the quantities are at the same time considered
to be equal to each other and not equal to each other! A
second axiom states that a curve is “the totality of an infin-
ity of straight segments, each infinitely small.” This is an
open embracing of methods that Aristotle had outlawed
2,000 years earlier.

Indeed, wrote L'Hospital, “ordinary analysis deals only
with finite quantities; this one penetrates as far as infinity
itself. It compares the infinitely small differences of finite
quantities; it discovers the relations between these differ-
ences, and in this way makes known the relations between
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finite quantities that are, as it were, infinite compared wits
the infinitely small quantities. One may even say that this
analysis extends beyond infinity, for it does not confine it-
self to the infinitely small differences but discovers the re-
lations between the differences of these differences.”

Newton and Leibniz did not share L'Hospital's enthusi-
asm. Leibniz did not claim that infinitesimals really existed,
only that one could reason without error as if they did
exist. Although Leibniz could not substantiate this claim,
Robinson's work shows that in some sense he was right
after all. Newton tried to avoid the infinitesimal. In his
Principia Mathematica, as in Archimedes' On the Quadrature
of the Parabola, results that were originally found by infini-
tesimal methods are presented in a purely finite Euclidean
fashion.

Dynamics had become as important as geometry in pro-
viding questions for mathematical analysis. The leading
problem was the connection between “fluents” and “flux-
ions,” what would today be called the instantaneous posi-
tion and the instantaneous velocity of a moving body.

Consider a falling stone. Its motion is described by giv-
ing its position as a function of time. As it falls its velocity
increases, so that the velocity at each instant is also a vari-
able function of time. Newton called the position functic
the “fluent” and the velocity function the “fuxion.” If ei-
ther of the two is given, the other can be determined; this
connection is the heart of the infinitesimal calculus fash-
ioned by Newton and Leibniz.

In the case of the falling stone the fluent is given by the
formula s = 1622, where s is the number of feet traveled
and ¢ is the number of seconds elapsed since the stone was
released. As the stone falls its velocity increases steadily.
How can we compute the velocity of the falling stone at
some instant of time, say at ¢ = 1?

We could find the average velocity for a finite time by the
elementary formula: velocity equals distance divided by
time. Can we use this formula to find the instantaneous ve-
locity? In an infinitesimal increment of time the increment
of distance would also be infinitesimal; their ratio, the aver-
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age speed during the instant, should be the finite instanta-
neous velocity we seek.

We let d¢ stand for the infinitesimal increment of time
and ds for the corresponding increment of distance. (Of
course ds and d¢ must be thought of as single symbols and
not as d times ¢ or d times s.) We want to find the ratio ds/d,
which is to be finite. To find the increment of distance
from t=1to ¢t= 1 + dt we compute the position of the
stone when ¢t = 1, which is 16 X 1* = 16, and its position
whent = 1 + dt, which is 16 X (1 + d)®. Using a little ele-
mentary algebra, we find that ds, the increment of distance,
which is the difference of these two distances, is
82dt + 16d#. Thus the ratio ds/dt, which is the quantity we
are trying to find, is equal to 32 + 164t.

Have we solved our problem? Since the answer should
be a finite quantity, we should like to drop the infinitesimal
term, 16dt, and get the answer, 32 feet per second, for the
instantaneous velocity. That is precisely what Bishop
Berkeley will not let us do.

The Analyst, Berkeley's brilliant and devastating critique
of the infinitesimal method, appeared in 1784. The book
was addressed to “an infidel mathematician,” who is gen-
erally supposed to have been Newton's friend the astron-
omer Edmund Halley. Halley financed the publication of
the Principia and helped to prepare it for the press. It is
said that he also persuaded a friend of Berkeley's of the
“inconceivability of the doctrines of Christianity”; the
Bishop responded that Newton's fluxions were as “ob-
scure, repugnant and precarious” as any point in divinity.

“I shall claim the privilege of a Free-thinker,” wrote the
Bishop, “and take the liberty to inquire into the object,
principles, and method of demonstration admitted by the
mathematicians of the present date, with the same free-
dom that you presume to treat the principles and mysteries
of Religion.” Berkeley declared that the Leibniz proce-
dure, simply “considering” 32 + 164t to be “the same” as
82, was unintelligible. “Nor will it avail,” he wrote, “to say
that [the term neglected] is a quantity exceedingly small;
since we are told that in rebus mathematicis errores quam min-
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tmi non sunt contemnendi.”" If something is neglected, 1..
matter how small, we can no longer claim to have the exact
velocity but only in approximation.

Newton, unlike Leibniz, tried in his later writings to
soften the “harshness” of the doctrine of infinitesimals by
using physically suggestive language. “By the ultimate ve-
locity is meant that with which the body is moved, neither
before it arrives at its last place, when the motion ceases,
nor after; but at the very instafit when it arrives. . . . And,
in like manner, by the ultimate ratio of evanescent quanti-
ties is to be understood the ratio of the quantities, not be-
fore they vanish, nor after, but that with which they van-
ish.” When he proceeded to compute, however, he still had
to justify dropping unwanted “negligible” terms from his
computed answer. Newton’s argument was to find first, as
we have done, ds/dt = 32 + 16dt, and then to set the incre-
ment dt equal to zero, leaving 32 as the exact answer.

But, wrote Berkeley, “it should seem that this reasoning
is not fair or conclusive.” After all, dtis either equal to zero
or not equal to zero. If dt is not zero, then 32 + 16dt is not
the same as 32. If dt is zero, then the increment in distance
ds is also zero, and the fraction ds/dt is not 32 + 16dt but a
meaningless expression, 0/0. “For when it is said, let the ir-
crements vanish, i.e., let the increments be nothing, or
there be no increments, the former supposition that the in-
crements were something, or that there were increments, is
destroyed, and yet a consequence of that supposition, i.e.,
an expression got by virtue thereof, is retained. Which is a
false way of reasoning.” Berkeley charitably concluded:
“What are these fluxions? The velocities of evanescent in-
crements. And what are these same evanescent incre-
ments? They are neither finite quantities, nor quantities in-
finitely small, nor yet nothing. May we not call them the
ghosts of departed quantities?”

Berkeley’s logic could not be answered; nevertheless,
mathematicians went on using infinitesimals for another
century, and with great success. Indeed, physicists and en-
gineers have never stopped using them. In pure mathe-
matics, on the other hand, a return to Euclidean rigor was
achieved in the nineteenth century, culminating under the
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leadership of Weierstrass in 1872. It is interesting to note
that the eighteenth century, the great age of the infinitesi-
mal, was the time when no barrier between mathematics
and physics was recognized. The leading physicists and the
leading mathematicians were the same people. When pure
mathematics reappeared as a separate discipline, mathe-
maticians again made sure that the foundations of their
work contained no obvious contradictions. Modern anal-
ysis secured its foundations by doing what the Greeks had
done: outlawing infinitesimals.

To find an instantaneous velocity according to the
Weierstrass method we abandon any attempt to compute
the speed as a ratio. Instead we define the speed as a limit,
which is approximated by ratios of finite increments. Let At
be a variable finite time increment and As be the corre-
sponding variable space increment. Then As/At is the vari-
able quantity 32 + 16At. By choosing At sufficiently small
we can make As/Ai take on values as close as we like to the
value 82, and so, by definition, the speed at ¢ = 1 is exactly
82.

This approach succeeds in removing any reference to
numbers that are not finite. It also avoids any attempt
directly to set At equal to zero in the fraction As/At. Thus
we avoid both of the logical pitfalls exposed by Bishop
Berkeley. We do, however, pay a price. The intuitively
clear and physically measurable quantity, the instantane-
ous velocity, becomes subject to the surprisingly subtle no-
tion of “limit.” If we spell out in detail what that means, we
have the following tongue-twister:

The velocity is v if, for any positive number ¢, As/At — v
is less than e in absolute value for all values of At less in ab-
solute value than some other positive number 8 (which will
depend on € and 1).

We have defined v by means of a subtle relation between
two new quantities, € and 8, which in some sense are irrele-
vant to v itself. At least ignorance of € and & never pre-
vented Bernoulli or Euler from finding a velocity. The
truth is that in a real sense we already knew what instanta-
neous velocity was before we learned this definition; for
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the sake of logical consistency we accept a definition that 1s
much harder to understand than the concept being de-
fined. Of course, to a trained mathematician the epsilon-
delta definition is intuitive; this shows what can be accom-
plished by proper training.

The reconstruction of the calculus on the basis of the
limit concept and its epsilon-delta definition amounted to a
reduction of the calculus to the arithmetic of real numbers.
The momentum gathered by these foundational clarifica-
tions led naturally to an assault on the logical foundations of
the real-number system itself. This was a return after two
and a half millenniums to the problem of irrational num-
bers, which the Greeks had abandoned as hopeless after
Pythagoras. One of the tools in these efforts was the newly
developing field of mathematical, or symbolic, logic.

More recently it has been found that mathematical logic
provides a conceptual foundation for the theory of com-
puting machines and computer programs. Hence this pro-
totype of purity in mathematics now has to be regarded as
belonging to the applicable part of mathematics.

The link between logic and computing is to a great ex-
tent the notion of a formal language, which is the kind of
language machines understand. And it is the notion of
formal language that enabled Robinson to make preci.
Leibniz’ claim that one could without error reason as if in-
finitesimals existed.

Leibniz had thought of infinitesimals as being infinitely
small positive or negative numbers that still had “the same
properties” as the ordinary numbers of mathematics. On
its face the idea seems self-contradictory. If infinitesimals
have the same “properties” as ordinary numbers, how can
they have the “property” of being positive yet smaller than
any ordinary positive number? It was by using a formal
language that Robinson was able to resolve the paradox.
Robinson showed how to construct a system containing in-
finitesimals that was identical with the system of “real”
numbers with respect to all those properties expressible in
a certain formal language. Naturally the “property” of
being positive yet smaller than any ordinary positive num-
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ber will turn out not to be expressible in the language,
thereby escaping the paradox.

The situation is familiar to anyone who has ever com-
municated with a computing machine. A computer accepts
as inputs only symbols from a certain list that is given in
advance to the user, and the symbols must be used in ac-
cordance with certain given rules. Ordinary language, as
used in human communication, is subject to rules that lin-
guists are still far from understanding. Computers are
“stupid,” if you have to communicate with them, precisely
because unlike humans they work in a formal language
with a given vocabulary and a given set of rules. Humans
work in a natural language, with rules that have never been
made fully explicit.

Mathematics, of course, is a human activity, like philoso-
phy or the design of computers; like these other activities,
it is carried on by humans using natural languages. At the
same time mathematics has, as a special feature, the ability
to be well described by a formal language, which in some
sense mirrors its content precisely. It might be said that the
possibility of putting a mathematical discovery into a for-
mal language is the test of whether it is fully understood.

In nonstandard analysis one takes as the starting point
the finite real numbers and the rest of the calculus as
known to standard mathematicians. Call this the “standard
universe,” designated by the letter M. The formal lan-
guage in which we talk about M can be designated L. Any
sentence in L is a proposition about M, and of course it
must be either true or false, That is, any sentence in L is
either true or its negation is true, We call the set of all true
sentences K, and we say M is a “model” for K. By this we
mean that M is a mathematical structure such that every
sentence in K, when interpreted as referring to M, is true.
Of course, we do not “know” K in any effective sense; if we
did, we would have the answer to every possible question in
analysis. Nevertheless, we regard K as being a well-defined
object, about which we can reason and draw conclusions.

The essential fact, the main point, is that in addition to
M, the standard universe, there are also nonstandard
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models for XK. That is, there are mathematical structu
M*, essentially different from M (in a sense we shall ex-
plain) and that nevertheless are models for K in the natural
sense of the term: there are objects in M* and relations be-
tween objects in M* such that if the symbols in L are rein-
terpreted to apply to these pseudo-objects and pseudo-re-
lations in the appropriate way, then every sentence in X is
still true, although with a different meaning.

A crude analogy may help the intuition. Let M be the set
of graduating seniors at Central High School. Suppose, for
argument’s sake, that all these students had their picture
taken for the yearbook, where the students all appear in
two-inch squares. Then M* can be the set of all two-inch
squares on any page of the yearbook. Clearly, with an obvi-
ous interpretation, any true statement about a student at
Central High corresponds to a true statement about a cer-
tain two-inch square in the yearbook. Still, there are many
two-inch squares in the yearbook that do not correspond to
any student. M* is much bigger than M; in addition to
members corresponding to the members of M, it also con-
tains many other members.

Hence the statement “Harry Smith is thinner than
George Klein,” when interpreted in M¥, is a statement
about certain two-inch squares. It is not true if the relatis
“thinner than” is interpreted in the standard way. Th.
“thinner than” has to be reinterpreted, as a pseudorela-
tion, between pseudostudents (pictures of students). We
could define the pseudorelation “thinner than” (in quota-
tion marks) by saying that the two-inch square labeled
“Harry Smith” is “thinner than” the two-inch square la-
beled “George Klein" only if Harry Smith is actually thin-
ner than George Klein. In this way true statements about
students are reinterpreted as true statements about two-
inch squares.

Of course, in this example the entire argument is a bit
contrived. If M is the standard universe for the calculus,
however, then M*, the nonstandard universe, is a remark-
able and interesting place.

The existence of interesting nonstandard models was
first discovered by the Norwegian logician Thoralf A. Sko-

248





