Avtech Operations Continuous Improvement Activities

Welcome UW IE Students!
November 6, 2002

- Per the Avtech 2002 Business Plan:
 - "Improve product quality, schedule performance, and cost through continuous improvement... by better utilizing planning, process flow methods, and systems"

• Lean manufacturing changes the focal point from the process to flow of value (value stream).

• <u>Value Stream</u> - all the actions (both value added and non-value added) currently required to bring a product from raw material into the hands of the customer.

• <u>Value Stream Improvement</u> - focuses on material and information.

• <u>Process-Level Improvement</u> - focuses on people and process flow and eliminating waste at the shop floor team level.

• One of the big advantages of creating flow teams is that it causes us to take a long, hard look at the processes and make improvements by reducing waste.

• Results:

- Lead times are reduced
- Flexibility increases and we can build the right product at the right time
- WIP on the manufacturing floor is reduced
- Space requirements are reduced

- Results (cont):
 - Quality is improved by reducing process variation and quality problems are eliminated before they grow
 - Overproduction is reduced and, eventually,
 even eliminated (producing more, sooner, faster
 than is required by the next process)

Lean Manufacturing Implementation Steps

- Creating continuous flow teams involves four steps:
 - Define the product family
 - Evaluate the current state
 - Develop the future state
 - Implement

Define the Product Family

- A product family is defined as a group of products that pass through similar processing steps and over common equipment in our downstream processes.
 - Similar assembly procedures
 - Similar testing procedures
 - Similar work content
 - Similar material

Define the Product Family

- Demand Profile requirements
 - Predictable
 - Relatively stable rate
 - Volume high enough to sustain a work team

Evaluate the Current State

- Complete detailed time studies of each element of each process step for the product family.
- Complete detailed study of process flow for the product.
- Note non-value added activities and waste streams.

Evaluate the Current State

- Investigate document changes to improve manufacturing processes.
- Investigate process changes to improve cycle time.
- Create baseline metrics.

Create the Future State

- Create a Gantt chart and define the work team size.
 - A Gantt chart details the sequential process
 flow to assist in balancing the production line
 - Standardizes work content

Process Gantt Chart

Person 1	6:00	6:15	6:30	6:45	7:00	7:15	7:30	7:45	8:00	8:15	8:30	8:45	9:00	9:15	9:30	9:45	10:00	10:15	10:30	10:45	11:00	11:15	11:30	11:45	12:00	12:15	12:30	12:45	13:00	13:15	13:30
Complete assy prior	0.00	0.10	0.00	00					0.00	00	0.00	0.10	0.00	55	0.00	00													.0.00		
to cal (2) units	В																														
Cal and install select																															
(5) units								В																							
Group B off to coating																															
J 114																															
-30 prep one side														С																	
Install cover and final																															
test																							A								
Group A off to FI																															
-30 prep work																											C				
Solder -30 comp (3)																															
Person 2	6:00	6:15	6:30	6:45	7:00	7:15	7:30	7:45	8:00	8:15	8:30	8:45	9:00	9:15	9:30	9:45	10:00	10:15	10:30	10:45	11:00	11:15	11:30	11:45	12:00	12:15	12:30	12:45	13:00	13:15	13:30
Complete assy prior																															
to cal (3) units	В																														
Assemble less cover																															
group A										Α																					
Group A off to inspect																															
Make diode assys															С																
Touch up -50																			С												
Complete -50 assy																							С								
solder -30 comp (2)																															
crimp conn wires																															

Create the Future State

- Change drawings, processes, etc. as needed to support the Gantt chart.
- Create the POU warehouse.
 - Define common and unique parts
 - Determine kanban sizing
 - Coordinate intent to go POU with stores

Create the Future State

- Evaluate resources needed to support the future state.
 - Test equipment
 - Shared resources
 - Physical location
 - Available labor
- Evaluate the future state for improvement in metrics.

Implement

- Change all necessary drawing, procedures, routers, etc.
- Train new team members to the Gantt.
- Physically set-up the work team.
- Set up the warehouse in MMC and in the work area.

Implement

- Start priming the system.
- Kick-off new team.
- Monitor progress continually.

Lean Manufacturing Benefits

Cycle Time Reduction

- The benefits of reduced cycle time include:
 - reduced lead time
 - improved ability to meet customer demand changes
 - ease of management
 - less dependence on forecasts
 - less inventory required for same throughput

Team H Cycle Time

Team Y Cycle Time

Team D Cycle Time

Cycle Time Reduction

- Average cumulative cycle time reduction across teams D, H, and Y is
 - 116 days

WIP Turns and WIP \$

- The benefits of increased WIP turns and decreased WIP \$'s include:
 - Lower inventory levels (as upstream inventory levels are decreased in conjunction with the reduction)
 - Less capital tied up in inventory (as upstream inventory levels are decreased in conjunction with the reduction)
 - Converts inventory into revenue more quickly
 - Quality issues or Engineering changes easier to manage
 - Less dependence on forecast

Aggregate WIP Turns

Improved workplace organization

- The benefits of better workplace organization include:
 - Forces the question "do we really need this?"
 - Ease of movement of cells
 - PC's on bench allow for easy access to documentation and reduce workstation clutter
 - Efficient use of manufacturing floor space

Improved Workplace Organization

• "Old", cluttered, disorganized inventory storage system in REU

Improved Workplace Organization

Reduced Footprint

Improved Workplace Organization

- Cumulative effect of re-organizations
 - 460ft² of free manufacturing space
 - Unoccupied work cells available for new teams
 - Eliminated a number of unnecessary pieces of equipment

POU Inventory Management

- Benefits include:
 - Shorter cycle time
 - Reduction in overall product labor content
 - Ownership of inventory
 - Mobility
 - Skill-set proliferation
 - Better workplace organization
 - Reduction of non-value-added activity

POU Inventory Management

• Reduced Stores storage by 4.43 shelves.

Reduced non-value added kitting labor by 807 hours per year or \$4,462 per year.

POU Inventory Management

- Cumulative reduction of labor content across the products manufactured by teams D, H, and Y is
 - Headcount reduction of 2.6 people
 - Labor content reduction of \$64, 896

Operator Enrichment

- Team members learn a broader set of skills
 - Warehouse management
 - Inspection certification
 - Test stamp certification
- Increased accountability for team performance
- CRSO returns
 - Improved TAT
 - Closed feedback loop on product quality

Operator Enrichment

- Self-manage
 - Warehouse accuracy
 - Work order release
- Increased cross-training
- Source inspection
- Self-verification
- Assembler Tester Model
- Modified application for batch teams

Future Applications

- Shared resource kanban
- Supplier kanbans
- Cross-training of team members and regular rotation
- Manufacturing Flow Documents (MFD's)

Future Applications

- 5S programs
- Incorporating more "shared resource processes" into the small teams
- EOQ application where appropriate
- Value stream mapping and mixed model continuous flow

Future Applications

- POU implementation into shared resources
- Eliminate dedicated inspectors by incorporating them into the assembly processes
- Working with customers to increase the frequency of deliveries