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26C H A P T E R

The Application of Queueing Theory

A s described in Chap. 17, queueing theory has enjoyed a prominent place among the
modern analytical techniques of OR. However, the emphasis has been on develop-

ing a descriptive mathematical theory. Thus, queueing theory is not directly concerned
with achieving the goal of OR: optimal decision making. Rather, it develops information
on the behavior of queueing systems. This theory provides part of the information needed
to conduct an OR study attempting to find the best design for a queueing system.

Section 17.10 discusses the application of queueing theory in the broader context of an
overall OR study. This chapter expands considerably further on this same topic. It begins by
introducing three examples that will be used for illustration throughout the chapter. Section
26.2 discusses the basic considerations for decision making in this context. The following
two sections then develop decision models for the optimal design of queueing systems. The
last model requires the incorporation of travel-time models, which are presented in Sec. 26.5.

� 26.1 EXAMPLES

Example 1—How Many Repairers?

SIMULATION, INC., a small company that makes gidgets for analog computers, has
10 gidget-making machines. However, because these machines break down and require
repair frequently, the company has only enough operators to operate eight machines at
a time, so two machines are available on a standby basis for use while other machines
are down. Thus, eight machines are always operating whenever no more than two ma-
chines are waiting to be repaired, but the number of operating machines is reduced by 1
for each additional machine waiting to be repaired.

The time until any given operating machine breaks down has an exponential distribu-
tion, with a mean of 20 days. (A machine that is idle on a standby basis cannot break down.)
The time required to repair a machine also has an exponential distribution, with a mean of
2 days. Until now the company has had just one repairer to repair these machines, which
has frequently resulted in reduced productivity because fewer than eight machines are op-
erating. Therefore, the company is considering hiring a second repairer, so that two ma-
chines can be repaired simultaneously.

Thus, the queueing system to be studied has the repairers as its servers and the ma-
chines requiring repair as its customers, where the problem is to choose between having
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26-2 CHAPTER 26 THE APPLICATION OF QUEUEING THEORY

one or two servers. (Notice the analogy between this problem and the County Hospital
emergency room problem described in Sec. 17.1.) With one slight exception, this system
fits the finite calling population variation of the M/M/s model presented in Sec. 17.6,
where N � 10 machines, � � �

2
1
0
� customer per day (for each operating machine), and 

� � �
1
2

� customer per day. The exception is that the �0 and �1 parameters of the birth-and-
death process are changed from �0 � 10� and �1 � 9� to �0 � 8� and �1 � 8�. (All the
other parameters are the same as those given in Sec. 17.6.) Therefore, the Cn factors for
calculating the Pn probabilities change accordingly (see Sec. 17.5).

Each repairer costs the company approximately $280 per day. However, the estimated
lost profit from having fewer than eight machines operating to produce gidgets is $400
per day for each machine down. (The company can sell the full output from eight oper-
ating machines, but not much more.)

The analysis of this problem will be pursued in Secs. 26.3 and 26.4.

Example 2—Which Computer?

EMERALD UNIVERSITY is making plans to lease a supercomputer to be used for sci-
entific research by the faculty and students. Two models are being considered: one from
the MBI Corporation and the other from the CRAB Company. The MBI computer costs
more but is somewhat faster than the CRAB computer. In particular, if a sequence of typ-
ical jobs were run continuously for one 24-hour day, the number completed would have
a Poisson distribution with a mean of 30 and 25 for the MBI and the CRAB computers,
respectively. It is estimated that an average of 20 jobs will be submitted per day and that
the time from one submission to the next will have an exponential distribution with a mean
of 0.05 day. The leasing cost per day would be $5,000 for the MBI computer and $3,750
for the CRAB computer.

Thus, the queueing system of concern has the computer as its (single) server and the
jobs to be run as its customers. Furthermore, this system fits the M/M/1 model presented
at the beginning of Sec. 17.6. With 1 day as the unit of time, � � 20 customers per day,
and � � 30 and 25 customers per day with the MBI and the CRAB computers, respec-
tively. You will see in Secs. 26.3 and 26.4 how the decision was made between the two
computers.

Example 3—How Many Tool Cribs?

The MECHANICAL COMPANY is designing a new plant. This plant will need to include
one or more tool cribs in the factory area to store tools required by the shop mechanics.
The tools will be handed out by clerks as the mechanics arrive and request them and will
be returned to the clerks when they are no longer needed. In existing plants, there have
been frequent complaints from supervisors that their mechanics have had to waste too much
time traveling to tool cribs and waiting to be served, so it appears that there should be more
tool cribs and more clerks in the new plant. On the other hand, management is exerting
pressure to reduce overhead in the new plant, and this reduction would lead to fewer tool
cribs and fewer clerks. To resolve these conflicting pressures, an OR study is to be con-
ducted to determine just how many tool cribs and clerks the new plant should have.

Each tool crib constitutes a queueing system, with the clerks as its servers and the
mechanics as its customers. Based on previous experience, it is estimated that the time
required by a tool crib clerk to service a mechanic has an exponential distribution, with
a mean of �

1
2

� minute. Judging from the anticipated number of mechanics in the entire factory
area, it is also predicted that they would require this service randomly but at a mean rate
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of 2 mechanics per minute. Therefore, it was decided to use the M/M/s model of Sec. 17.6
to represent each queueing system. With 1 hour as the unit of time, � � 120. If only one
tool crib were to be provided, � also would be 120. With more than one tool crib, this
mean arrival rate would be divided among the different queueing systems.

The total cost to the company of each tool crib clerk is about $20 per hour. The cap-
ital recovery costs, upkeep costs, and so forth associated with each tool crib provided are
estimated to be $16 per working hour. While a mechanic is busy, the value to the com-
pany of his or her output averages about $48 per hour.

Sections 26.3 and 26.4 include discussions of how this (and additional) information
was used to make the required decisions.

26.2 DECISION MAKING 26-3

� 26.2 DECISION MAKING

Queueing-type situations that require decision making arise in a wide variety of contexts.
For this reason, it is not possible to present a meaningful decision-making procedure that
is applicable to all these situations. Instead, this section attempts to give a broad concep-
tual picture of a typical approach.

Designing a queueing system typically involves making one or a combination of the
following decisions:

1. Number of servers at a service facility
2. Efficiency of the servers
3. Number of service facilities.

When such problems are formulated in terms of a queueing model, the corresponding de-
cision variables usually are s (number of servers at each facility), � (mean service rate per
busy server), and � (mean arrival rate at each facility). The number of service facilities is
directly related to � because, assuming a uniform workload among the facilities, � equals
the total mean arrival rate to all facilities divided by the number of facilities. (Section 17.10
also mentions two other possible decisions when designing a queueing system, namely, the
amount of waiting space in the queue and any priorities for different categories of cus-
tomers, but we will focus in this chapter on the three types of decisions listed above.)

Refer to Sec. 26.1 and note how the three examples there respectively illustrate situ-
ations involving these three decisions. In particular, the decision facing Simulation, Inc.,
is how many repairers (servers) to provide. The problem for Emerald University is how
fast a computer (server) is needed. The problem facing Mechanical Company is how many
tool cribs (service facilities) to install as well as how many clerks (servers) to provide at
each facility.

The first kind of decision is particularly common in practice. However, the other two
also arise frequently, particularly for the internal service systems described in Sec. 17.3.
One example illustrating a decision on the efficiency of the servers is the selection of the
type of materials-handling equipment (the servers) to purchase to transport certain kinds
of loads (the customers). Another such example is the determination of the size of a main-
tenance crew (where the entire crew is one server). Other decisions concern the number
of service facilities, such as copy centers, computer facilities, tool cribs, storage areas,
and so on, to distribute throughout an area.

All the specific decisions discussed here involve the general question of the appropriate
level of service to provide in a queueing system. As mentioned at the beginning of Chap. 17
and in Sec. 17.10, decisions regarding the amount of service capacity to provide usually are
based primarily on two considerations: (1) the cost incurred by providing the service, as
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shown in Fig. 26.1, and (2) the amount of waiting for that service, as suggested in Fig. 26.2.
Figure 26.2 can be obtained by using the appropriate waiting-time equation from queueing
theory. (For better conceptualization, we have drawn these figures and the subsequent two
figures as smooth curves even though the level of service may be a discrete variable.)

These two considerations create conflicting pressures on the decision maker. The ob-
jective of reducing service costs recommends a minimal level of service. On the other
hand, long waiting times are undesirable, which recommends a high level of service. There-
fore, it is necessary to strive for some type of compromise. To assist in finding this com-
promise, Figs. 26.1 and 26.2 may be combined, as shown in Fig. 26.3. The problem is
thereby reduced to selecting the point on the curve of Fig. 26.3 that gives the best bal-
ance between the average delay in being serviced and the cost of providing that service.
Reference to Figs. 26.1 and 26.2 indicates the corresponding level of service.

26-4 CHAPTER 26 THE APPLICATION OF QUEUEING THEORY
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� FIGURE 26.1
Service cost as a function of
service level.

� FIGURE 26.2
Expected waiting time as a
function of service level.
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� FIGURE 26.3
Relationship between
average delay and service
cost.
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Obtaining the proper balance between delays and service costs requires answers to
such questions as, How much expenditure on service is equivalent (in its detrimental im-
pact) to a customer’s being delayed 1 unit of time? Thus, to compare service costs and
waiting times, it is necessary to adopt (explicitly or implicitly) a common measure of their
impact. The natural choice for this common measure is cost, which then requires estima-
tion of the cost of waiting.

Because of the diversity of waiting-line situations, no single process for estimating
the cost of waiting is generally applicable. However, we shall discuss the basic consider-
ations involved for several types of situations.

One broad category is where the customers are external to the organization provid-
ing the service; i.e., they are outsiders bringing their business to the organization. Con-
sider first the case of profit-making organizations (typified by the commercial service sys-
tems described in Sec. 17.3). From the viewpoint of the decision maker, the cost of waiting
probably consists primarily of the lost profit from lost business. This loss of business may
occur immediately (because the customer grows impatient and leaves) or in the future (be-
cause the customer is sufficiently irritated that he or she does not come again). This kind
of cost is quite difficult to estimate, and it may be necessary to revert to other criteria,
such as a tolerable probability distribution of waiting times. When the customer is not a
human being, but a job being performed on order, there may be more readily identifiable
costs incurred, such as those caused by idle in-process inventories or increased expedit-
ing and administrative effort.

Now consider the type of situation where service is provided on a nonprofit basis to
customers external to the organization (typical of social service systems and some trans-
portation service systems described in Sec. 17.3). In this case, the cost of waiting usually
is a social cost of some kind. Thus, it is necessary to evaluate the consequences of the
waiting for the individuals involved and/or for society as a whole and to try to impute a
monetary value to avoiding these consequences. Once again, this kind of cost is quite dif-
ficult to estimate, and it may be necessary to revert to other criteria.

A situation may be more amenable to estimating waiting costs if the customers are
internal to the organization providing the service (as for the internal service systems dis-
cussed in Sec. 17.3). For example, the customers may be machines (as in Example 1) or
employees (as in Example 3) of a firm. Therefore, it may be possible to identify directly
some of or all the costs associated with the idleness of these customers. Typically, what
is being wasted by this idleness is productive output, in which case the waiting cost be-
comes the lost profit from all lost productivity.

Given that the cost of waiting has been evaluated explicitly, the remainder of the analysis
is conceptually straightforward. The objective is to determine the level of service that mini-
mizes the total of the expected cost of service and the expected cost of waiting for that ser-
vice. This concept is depicted in Fig. 26.4, where WC denotes waiting cost, SC denotes ser-
vice cost, and TC denotes total cost. Thus, the mathematical statement of the objective is to

Minimize E(TC) � E(SC) � E(WC).

The next three sections are concerned with the application of this concept to various
types of problems. Thus, Sec. 26.3 describes how E(WC) can be expressed mathemati-
cally. Section 26.4 then focuses on E(SC) to formulate the overall objective function E(TC)
for several basic design problems (including some with multiple decision variables, so
that the level-of-service axis in Fig. 26.4 then requires more than one dimension). This
section also introduces the fact that when a decision on the number of service facilities is
required, time spent in traveling to and from a facility should be included in the analysis
(as part of the total time waiting for service). Section 26.5 discusses how to determine the
expected value of this travel time.

26.2 DECISION MAKING 26-5
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To express E(WC) mathematically, we must first formulate a waiting-cost function that de-
scribes how the actual waiting cost being incurred varies with the current behavior of the queue-
ing system. The form of this function depends on the context of the individual problem.
However, most situations can be represented by one of the two basic forms described next.

The g(N) Form

Consider first the situation discussed in the preceding section where the queueing system
customers are internal to the organization providing the service, and so the primary cost of
waiting may be the lost profit from lost productivity. The rate at which productive output is
lost sometimes is essentially proportional to the number of customers in the queueing sys-
tem. However, in many cases there is not enough productive work available to keep all the
members of the calling population continuously busy. Therefore, little productive output may
be lost by having just a few members idle, waiting for service in the queueing system,
whereas the loss may increase greatly if a few more members are made idle because they
require service. Consequently, the primary property of the queueing system that determines
the current rate at which waiting costs are being incurred is N, the number of customers in
the system. Thus, the form of the waiting-cost function for this kind of situation is that il-
lustrated in Fig. 26.5, namely, a function of N. We shall denote this form by g(N).

The g(N ) function is constructed for a particular situation by estimating g(n), the
waiting-cost rate incurred when N � n, for n � 1, 2, . . . , where g(0) � 0. After com-
puting the Pn probabilities for a given design of the queueing system, we can calculate

E(WC) � E(g(N )).

Because N is a random variable, this calculation is made by using the expression for the
expected value of a function of a discrete random variable

E(WC) � �
�

n�0
g(n)Pn.

The Linear Case. For the special case where g(N ) is a linear function (i.e., when the
waiting cost is proportional to N ), then

g(N ) � CwN,
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� FIGURE 26.4
Conceptual solution
procedure for many waiting-
line problems.

� 26.3 FORMULATION OF WAITING-COST FUNCTIONS
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where Cw is the cost of waiting per unit time for each customer. In this case, E(WC) re-
duces to

E(WC) � Cw�
�

n�0
nPn � CwL.

Example 1—How Many Repairers? For Example 1 of Sec. 26.1, Simulation, Inc.,
has two standby widget-making machines, so there is no lost productivity as long as the
number of customers (machines requiring repair) in the system does not exceed 2. How-
ever, for each additional customer (up to the maximum of 10 total), the estimated lost
profit is $400 per day. Therefore,

g(n) � �
as shown in Table 26.1. Consequently, after calculating the Pn probabilities as described in
Sec. 26.1, E(WC) is calculated by summing the rightmost column of Table 26.1 for each
of the two cases of interest, namely, having one repairer (s � 1) or two repairers (s � 2).

for n � 0, 1, 2
for n � 3, 4, . . . , 10,

0
400(n � 2)
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� FIGURE 26.5
The waiting-cost function as
a function of N.

� TABLE 26.1 Calculation of E(WC) for Example 1

s � 1 s � 2

N � n g(n) Pn g(n)Pn Pn g(n)Pn

0 0 0.271 0 0.433 0
1 0 0.217 0 0.346 0
2 0 0.173 0 0.139 0
3 400 0.139 56 0.055 24
4 800 0.097 78 0.019 16
5 1,200 0.058 70 0.006 8
6 1,600 0.029 46 0.001 0
7 2,000 0.012 24 3 � 10�4 0
8 2,400 0.003 7 4 � 10�5 0
9 2,800 7 � 10�4 0 4 � 10�6 0

10 3,200 7 � 10�5 0 2 � 10�7 0

E(WC) $281 per day $48 per day
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The h(�) Form

Now consider the cases discussed in Sec. 26.2 where the queueing system customers are
external to the organization providing the service. Three major types of queueing systems
described in Sec. 17.3—commercial service systems, transportation service systems, and
social service systems—typically fall into this category. In the case of commercial ser-
vice systems, the primary cost of waiting may be the lost profit from lost future busi-
ness. For transportation service systems and social systems, the primary cost of waiting
may be in the form of a social cost. However, for either type of cost, its magnitude tends
to be affected greatly by the size of the waiting times experienced by the customers.
Thus, the primary property of the queueing system that determines the waiting cost cur-
rently being incurred is �, the waiting time in the system for the individual customers.
Consequently, the form of the waiting-cost function for this kind of situation is that il-
lustrated in Fig. 26.6, namely, a function of �. We shall denote this form by h(�).

Note that the example of a h(�) function shown in Fig. 26.6 is a nonlinear function
where the slope keeps increasing as � increases. Although h(�) sometimes is a simple
linear function instead, it is fairly common to have this kind of nonlinear function. An in-
creasing slope reflects a situation where the marginal cost of extending the waiting time
keeps increasing. A customer may not mind a “normal” wait of reasonable length, in which
case there may be virtually no negative consequences for the organization providing the
service in terms of lost profit from lost future business, a social cost, etc. However, if the
wait extends even further, the customer may become increasingly exasperated, perhaps
even missing deadlines. In such a situation, the negative consequences to the organization
may rapidly become relatively severe.

One way of constructing the h(�) function is to estimate h(w) (the waiting cost in-
curred when a customer’s waiting time � � w) for several values of w and then to fit a
polynomial to these points. The expectation of this function of a continuous random vari-
able is then defined as

E(h(�)) � ��

0
h(w) f�(w) dw,

where f�(w) is the probability density function of �. However, because E(h(�)) is the
expected waiting cost per customer and E(WC) is the expected waiting cost per unit time,
these two quantities are not equal in this case. To relate them, it is necessary to multiply
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E(h(�)) by the expected number of customers per unit time entering the queueing sys-
tem. In particular, if the mean arrival rate is a constant �, then

E(WC) � �E(h(�)) � � ��

0
h(w) f�(w) dw.

Example 2—Which Computer? Because the faculty and students of Emerald Uni-
versity would experience different turnaround times with the two computers under con-
sideration (see Sec. 26.1), the choice between the computers required an evaluation of the
consequences of making them wait for their jobs to be run. Therefore, several leading sci-
entists on the faculty were asked to evaluate these consequences.

The scientists agreed that one major consequence is a delay in getting research done.
Little effective progress can be made while one is awaiting the results from a computer
run. The scientists estimated that it would be worth $500 to reduce this delay by a day.
Therefore, this component of waiting cost was estimated to be $500 per day, that is, 500�,
where � is expressed in days.

The scientists also pointed out that a second major consequence of waiting is a break
in the continuity of the research. Although a short delay (a fraction of a day) causes lit-
tle problem in this regard, a longer delay causes significant wasted time in having to gear
up to resume the research. The scientists estimated that this wasted time would be roughly
proportional to the square of the delay time. Dollar figures of $100 and $400 were then
imputed to the value of being able to avoid this consequence entirely rather than having
a wait of �

1
2

� day and 1 day, respectively. Therefore, this component of the waiting cost was
estimated to be 400�2.

This analysis yields

h(�) � 500� � 400�2.

Because

f�(w) � �(1 � �)e��(1��)w

for the M/M/1 model (see Sec. 17.6) fitting this single-server queueing system,

E(h(�)) � ��

0
(500w � 400w2)�(1 � �)e��(1��)w dw,

where � � �/� for a single-server system. Since �(1 � �) � (� � �), the values of � and
� presented in Sec. 26.1 give

�(1 � �) � �
Evaluating the integral for these two cases yields

E(h(�)) � �
The result represents the expected waiting cost (in dollars) for each person arriving with
a job to be run. Because � � 20, the total expected waiting cost per day becomes

E(WC) � �
The Linear Case. Before turning to the next example, consider now the special case
where h(�) is a linear function,

h(�) � Cw�,

for MBI computer
for CRAB computer.

$1,160 per day
$2,640 per day

for MBI computer
for CRAB computer.

58
132

for MBI computer
for CRAB computer.

10
5
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where Cw is the cost of waiting per unit time for each customer. In this case, E(WC) re-
duces to

E(WC) � �E(Cw�) � Cw(�W) � CwL.

Note that this result is identical to the result when g(N ) is a linear function. Consequently,
when the total waiting cost incurred by the queueing system is simply proportional to the
total waiting time, it does not matter whether the g(N ) or the h(�) form is used for the
waiting-cost function.

Example 3—How Many Tool Cribs? As indicated in Sec. 26.1, the value to the 
Mechanical Company of a busy mechanic’s output averages about $48 per hour. Thus,
Cw � 48. Consequently, for each tool crib the expected waiting cost per hour is

E(WC) � 48L,

where L represents the expected number of mechanics waiting (or being served) at the
tool crib.
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� 26.4 DECISION MODELS

We mentioned in Sec. 26.2 that three common decision variables in designing queueing
systems are s (number of servers), � (mean service rate for each server), and � (mean ar-
rival rate at each service facility). We shall now formulate models for making some of
these decisions.

Model 1—Unknown s

Model 1 is designed for the case where both � and � are fixed at a particular service fa-
cility, but where a decision must be made on the number of servers to have on duty at the
facility.

Formulation of Model 1.

Definition: Cs � marginal cost of a server per unit time.
Given: �, �, Cs.
To find: s.
Objective: Minimize E(TC) � Css � E(WC).

Because only a few alternative values of s normally need to be considered, the usual
way of solving this model is to calculate E(TC) for these values of s and select the min-
imizing one. Section 17.10 describes and illustrates this approach for the linear case where
E(WC) � CwL. The example presented there uses an Excel template that has been provided
in your OR Courseware for performing these calculations when the queueing system fits
the M/M/s queueing model. However, as long as the queueing model is tractable, it often
is not very difficult to perform these calculations yourself for other cases, as illustrated
by the following example.

Example 1—How Many Repairers? For Example 1 of Sec. 26.1, each repairer
(server) costs Simulation, Inc., approximately $280 per day. Thus, with 1 day as the unit
of time, Cs � 280. Using the values of E(WC) calculated in Table 26.1 then yields the re-
sults shown in Table 26.2, which indicate that the company should continue having just
one repairer.
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Model 2—Unknown � and s

Model 2 is designed for the case where both the efficiency of service, measured by �,
and the number of servers s at a service facility need to be selected.

Alternative values of � may be available because there is a choice on the quality of
the servers. For example, when the servers will be materials-handling units, the quality of
the units to be purchased affects their service rate for moving loads.

Another possibility is that the speed of the servers can be adjusted mechanically. For
example, the speed of machines frequently can be adjusted by changing the amount of
power consumed, which also changes the cost of operation.

Still another type of example is the selection of the number of crews (the servers)
and the size of each crew (which determines �) for jointly performing a certain task. The
task might be maintenance work, or loading and unloading operations, or inspection work,
or setup of machines, and so forth.

In many cases, only a few alternative values of � are available, e.g., the efficiency of
the alternative types of materials-handling equipment or the efficiency of the alternative
crew sizes.

Formulation of Model 2.

Definitions: f (�) � marginal cost of server per unit time when mean service
rate is �.

A � set of feasible values of �.
Given: �, f (�), A.
To find: �, s.
Objective: Minimize E(TC) � f (�)s � E(WC), subject to ��A.

Example 2—Which Computer? As indicated in Sec. 26.1, � � 30 for the MBI com-
puter and � � 25 for the CRAB computer, where 1 day is the unit of time. These com-
puters are the only two being considered by Emerald University, so

A � {25, 30}.

Because the leasing cost per day is $3,750 for the CRAB computer (� � 25) and $5,000
for the MBI computer (� � 30),

f (�) � �
The supercomputer chosen will be the only one available to the faculty and students, so
the number of servers (supercomputers) for this queueing system is restricted to s � 1.
Hence,

E(TC) � f (�) � E(WC),

for � � 25
for � � 30.

3,750
5,000
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� TABLE 26.2 Calculation of E(TC) in dollars per day for Example 1

s Css E(WC) E(TC)

�1 �$280 �$281 �$561 per day � minimum
�2 �$560 �$ 48 �$608 per day
�3 �$840 �$ 0 �$840 per day
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where E(WC) is given in Sec. 26.3 for the two alternatives. Thus,

E(TC) � �
Consequently, the decision was made to lease the MBI supercomputer.

The Application of Model 2 to Other Situations. This example illustrates a case
where the number of feasible values of � is finite but the value of s is fixed. If s were not
fixed, a two-stage approach could be used to solve such a problem. First, for each indi-
vidual value of �, set Cs � f (�), and solve for the value of s that minimizes E(TC) for
model 1. Second, compare these minimum E(TC) for the alternative values of �, and se-
lect the one giving the overall minimum.

When the number of feasible values of � is infinite (such as when the speed of a ma-
chine or piece of equipment is set mechanically within some feasible interval), another
two-stage approach sometimes can be used to solve the problem. First, for each individ-
ual value of s, analytically solve for the value of � that minimizes E(TC). [This approach
requires setting to zero the derivative of E(TC) with respect to � and then solving this
equation for �, which can be done only when analytical expressions are available for both
f (�) and E(WC).] Second, compare these minimum E(TC) for the alternative values of s,
and select the one giving the overall minimum.

This analytical approach frequently is relatively straightforward for the case of s � 1
(see Prob. 26.4-11. However, because far fewer and less convenient analytical results are
available for multiple-server versions of queueing models, this approach is either difficult
(requiring computer calculations with numerical methods to solve the equation for �) or
completely impossible when s � 1. Therefore, a more practical approach is to consider only
a relatively small number of representative values of � and to use available tabulated results
for the appropriate queueing model to obtain (or approximate) E(TC) for these � values.

A Special Result with Model 2. Fortunately, under certain fairly common circum-
stances described next, s � 1 (and its minimizing value of �) must yield the overall min-
imum E(TC) for model 2, so s � 1 cases need not be considered at all.

Optimality of a Single Server. Under certain conditions, s � 1 necessarily
is optimal for model 2.

The primary conditions1 are that

1. The value of � minimizing E(TC) for s � 1 is feasible.
2. Function f (�) is either linear or concave (as defined in Appendix 2).

In effect, this optimality result indicates that it is better to concentrate service capacity
into one fast server rather than dispersing it among several slow servers. Condition 2 says
that this concentrating of a given amount of service capacity can be done without in-
creasing the cost of service. Condition 1 says that it must be possible to make � suffi-
ciently large that a single server can be used to full advantage.

To understand why this result holds, consider any other solution to model 2,
(s, �) � (s*, �*), where s* � 1. The service capacity of this system (as measured by the
mean rate of service completions when all servers are working) is s*�*. We shall now
compare this solution with the corresponding single-server solution (s, �) � (1, s*�*)
having the same service capacity. In particular, Table 26.3 compares the mean rate at which

for CRAB computer
for MBI computer.

3,750 � 2,640 � $6,390 per day
5,000 � 1,160 � $6,160 per day

26-12 CHAPTER 26 THE APPLICATION OF QUEUEING THEORY

1There also are minor restrictions on the queueing model and the waiting-cost function. However, any of the
constant service-rate queueing models presented in Chap. 17 for s � 1 are allowed. If the g(N ) form is used for
the waiting-cost function, it can be any increasing function. If the h(�) form is used, it can be any linear func-
tion or any convex function (as defined in Appendix 2), which fits most cases of interest.
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service completions occur for each given number of customers in the system N � n. This
table shows that the service efficiency of the (s*, �*) solution sometimes is worse but
never is better than for the (1, s*�*) solution because it can use the full service capacity
only when there are at least s* customers in the system, whereas the single-server solu-
tion uses the full capacity whenever there are any customers in the system. Because this
lower service efficiency can only increase waiting in the system, E(WC) must be larger
for (s*, �*) than for (1, s*�*). Furthermore, the expected service cost must be at least as
large because condition 2 [and f (0) � 0] implies that

f (�*)s � f (s*�*).

Therefore, E(TC) is larger for (s*, �*) than (1, s*�*). Finally, note that condition 1 im-
plies that there is a feasible solution with s � 1 that is at least as good as (1, s*�*). The
conclusion is that any s � 1 solution cannot be optimal for model 2, so s � 1 must be
optimal.1

This result is still of some use even when one or both conditions fail to hold. If �
cannot be made sufficiently large to permit a single server, it still suggests that a few fast
servers should be preferred to many slow ones. If condition 2 does not hold, we still know
that E(WC) is minimized by concentrating any given amount of service capacity into a
single server, so the best s � 1 solution must be at least nearly optimal unless it causes a
substantial increase in service cost.

Model 3—Unknown � and s

Model 3 is designed especially for the case where it is necessary to select both the num-
ber of service facilities and the number of servers s at each facility. In the typical situa-
tion, a population (such as the employees in an industrial building) must be provided with
a certain service, so a decision must be made as to what proportion of the population (and
therefore what value of �) should be assigned to each service facility. Examples of such
facilities include employee facilities (drinking fountains, vending machines, and rest-
rooms), storage facilities, and reproduction equipment facilities. It may sometimes be clear
that only a single server should be provided at each facility (e.g., one drinking fountain
or one copy machine), but s often is also a decision variable.

26.4 DECISION MODELS 26-13

� TABLE 26.3 Comparison of service efficiency for Model 2 solutions

Mean Rate of Service Completions

N � n (s, �) � (s*, �*) versus (s, �) � (1, s*�*)

n � 0 0 � 0
n � 1, 2, . . . , s* � 1 n�* 	 s*�*
n � s* s*�* � s*�*

1For a rigorous proof of this result, see S. Stidham, Jr., “On the Optimality of Single-Server Queueing Systems,”
Operations Research, 18: 708–732, 1970. This result focuses on minimizing E(TC) when E(WC) is based on
waiting time in the system. However, if waiting costs are incurred only while waiting in the queue, markedly dif-
ferent results occur. For example, see X. Chao and C. Scott, “Several Results on the Design of Queueing Sys-
tems,” Operations Research, 48: 965–970, 2000. Furthermore, even when waiting time in the system is the rel-
evant quantity, if the concern is to avoid extremely long waiting times as much as possible rather than minimizing
E(TC), then several slow servers become superior to one fast server when the service-time distribution is so
highly variable that it possesses some infinite higher moments. For an analysis of this alternative viewpoint,
see A. Scheller-Wolf, “Necessary and Sufficient Conditions for Delay Moments in FIFO Multiserver Queues
with an Application Comparing s Slow Servers with One Fast One,” Operations Research, 51: 748–758, 2003.
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To simplify our presentation, we shall require in model 3 that � and s be the same
for all service facilities. However, it should be recognized that a slight improvement in
the indicated solution might be achieved by permitting minor deviations in these param-
eters at individual facilities. This should be investigated as part of the detailed analysis
that generally follows the application of the mathematical model.

Formulation of Model 3.

Definitions: Cs � marginal cost of server per unit time.
Cf � fixed cost of service per service facility per unit time.
�p � mean arrival rate for entire calling population.
n � number of service facilities � �p /�.

Given: �, Cs, Cf, �p.
To find: �, s.
Objective: Minimize E(TC), subject to � � �p/n, where n � 1, 2, . . . .

Finding E(TC). It might appear at first glance that the appropriate expression for the
expected total cost per unit time of all the facilities should be

E(TC) � n[(Cf � Css) � E(WC)],

where E(WC) here represents the expected waiting cost per unit time for each facility.
However, if this expression actually were valid, it would imply that n � 1 necessarily is
optimal for model 3. The reasoning is completely analogous to that for the optimality of
a single-server result for model 2; namely, any solution (n, s) � (n*, s*) with n* � 1 has
higher service costs than the (n, s) � (1, n*s*) solution, and it also has a higher expected
waiting cost because it sometimes makes less effective use of the available service ca-
pacity. In particular, it sometimes has idle servers at one facility while customers are wait-
ing at another facility, so the mean rate of service completions would be less than if the
customers had access to all the servers at one common facility.

Because there are many situations where it obviously would not be optimal to have just
one service facility (e.g., the number of restrooms in a 50-story building), something must
be wrong with this expression. Its deficiency is that it considers only the cost of service and
the cost of waiting at the service facilities while totally ignoring the cost of the time wasted
in traveling to and from the facilities. Because travel time would be prohibitive with only
one service facility for a large population, enough separate facilities must be distributed
throughout the calling population to hold travel time down to a reasonable level.

Thus, letting the random variable T be the round-trip travel time for a customer com-
ing to and going back from one of the service facilities, we see that the total time lost by
the customer actually is � � T. (Recall from Chap. 17 that � is the waiting time in the
queueing system after the customer arrives.) Therefore, a customer’s total cost for time
lost should be based on � � T rather than just �. To simplify the analysis, let us sepa-
rate this total cost into the sum of the waiting-time cost based on � (or N ) and the travel-
time cost based on T. We shall also assume that the travel-time cost is proportional to T,
where Ct is the cost of each unit of travel time for each customer. For ease of presenta-
tion, suppose that the probability distribution of T is the same for each service facility, so
that CtE(T) is the expected travel cost for each arrival at any of the service facilities. The
resulting expression for E(TC) is

E(TC) � n[(Cf � Css) � E(WC) � �CtE(T)]

because � is the expected number of arrivals per unit time at each facility. Consequently,
by evaluating (or estimating) E(T) for each case of interest, model 3 can be solved by cal-
culating E(TC) for various values of s for each n and then selecting the solution giving
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the overall minimum. The next section discusses how to evaluate E(T) and also solves an
example (Example 3 of Sec. 26.1) fitting model 3.

26.5 THE EVALUATION OF TRAVEL TIME 26-15

� 26.5 THE EVALUATION OF TRAVEL TIME

As discussed in Sec. 26.4, one of the important considerations for deciding how many
service facilities to provide is the amount of time that customers must spend traveling to
and from a facility. Therefore, the expected round-trip travel time E(T ) for a customer is
one of the components of the objective function for model 3, the decision model that is
concerned with deciding on the number of service facilities. We now shall elaborate on
how to determine E(T ).

E(T ) can be interpreted as the average travel time spent by customers in coming both
to and from a given service facility. Therefore, the value of E(T ) depends very much upon
the characteristics of the individual situation. However, we shall illustrate a rather general
approach to evaluating E(T ) by developing a basic travel-time model and then calculat-
ing E(T ) for the more complicated situation involved in Example 3. In both cases it is as-
sumed that the portion of the population assigned to the service facility under considera-
tion is distributed uniformly throughout the assigned area, that each arrival returns to its
original location after receiving service, and that the average speed of travel does not de-
pend upon the distance traveled. Another basic assumption is that all travel is rectilinear,
i.e., it progresses along a system of orthogonal paths (aisles, streets, highways, and so on)
that are parallel to the main sides of the area under consideration.

A Basic Travel-Time Model

Description: Rectangular area and rectilinear travel, as shown in Fig. 26.7.

Definitions: T � travel time (round trip) for an arrival.
v � average velocity (speed) of customers in traveling to and

from facility.
a, b, c, d � respective distances from facility to boundary of area

assigned to facility, as shown in Fig. 26.7.
Given: v, a, b, c, d.
To find: Expected value of T, E(T ).

Using an orthogonal (x, y) coordinate system, Fig. 26.7 shows the coordinates (x, y)
of the location of a particular customer. The x and y coordinates of the location from
which a random arrival comes actually are random variables X and Y, where X ranges
from �a to c and Y ranges from �b to d. Because the total round-trip distance traveled
by the random arrival is

D � 2(|X | � |Y |)

(−a, −b)

(0, 0)

(c , d )

(x, y )

� FIGURE 26.7
Graphical representation of a
basic travel-time model,
where the service facility is at
(0, 0) and a random arrival
comes from (and returns to)
some location (x, y).
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and

T � �
D
v
�,

it follows that

E(T ) � �
2
v

� (E{|X |} � E{|Y |}).

Thus, the problem is reduced to identifying the probability distributions of |X| and |Y | and
then calculating their means.

First consider |X|. Its probability distribution can be obtained directly from the dis-
tribution of X. Because the customers are assumed to be distributed uniformly through-
out the assigned area, and because the height of the rectangular area is the same for all
possible values of X � x, X must have a uniform distribution between �a and c, as shown
in Fig. 26.8a. Because |x| � |�x|, adding the probability density function values at x and
�x then yields the probability distribution of |X| shown in Fig. 26.8b.

Therefore, noting that |x| � x for x � 0,

E{|X |} � �max{a, c}

0
x f|x|(x) dx

� �min{a, c}

0
�
a

2
�

x
c

� dx � �max{a, c}

min{a, c}
�
a �

x
c

� dx

� �
1
2

� �
a �

1
c

� [(min{a, c})2 � (max{a, c})2]

� �
2
a
(

2

a
�

�

c
c

2

)
�.

The analysis for |Y | is completely analogous, where the width of the rectangular area
for possible values of Y � y now determines the probability distribution of Y.

The result is that

E{|Y |} � �
2
b
(

2

b
�

�

d
d

2

)
�.

Consequently,

E(T) � �
1
v

� ��aa
2 �

�

c
c

2

� � �
b
b

2 �

�

d
d

2

��.
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1
a + c

1
a + c

2
a + c

fx (x)

−a 0 0c x x

fx(x)

mina, c

maxa, c

(a) (b)

� FIGURE 26.8
Probability density functions
of (a) X; (b) |X|.
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Example 3—How Many Tool Cribs? For the new plant being designed for the
MECHANICAL COMPANY (see Sec. 26.1), the layout of the portion of the factory area
where the mechanics will work is shown in Fig. 26.9. The three possible locations for tool
cribs are identified as Locations 1, 2, and 3, where access to these locations will be pro-
vided by a system of orthogonal aisles parallel to the sides of the indicated area. The co-
ordinates are given in units of feet. The mechanics will be distributed quite uniformly
throughout the area shown, and each mechanic will be assigned to the nearest tool crib.
It is estimated that the mechanics will walk to and from a tool crib at an average speed
of slightly less than 3 miles/hour, so v is set at v � 15,000 feet/hour.

The three basic alternatives being considered are

Alternative 1: Have three tool cribs—use Locations 1, 2, and 3;
Alternative 2: Have one tool crib—use Location 2;
Alternative 3: Have two tool cribs—use Locations 1 and 3.

The calculation of E(T) for each alternative is given next, followed by the use of model 3
to make the choice among them.

Alternative 1 (n � 3): If all three locations were used, each tool crib would service a 300 �
300 foot square area. Therefore, this case is just a special case of the basic travel-time model
just presented, where a � c � 150 and b � d � 150. Consequently,

E(T) � �
15,00

1
0 ft/hr
� ��11

5
5
0
0

2 �

�

1
1
5
5
0
0

2

� � �
1
1
5
5
0
0

2 �

�

1
1
5
5
0
0

2

�� ft

� �
15,00

1
0 ft/hr
� (300 ft)

� 0.02 hr.
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(0, 300) (300, 300)

(300, 600) (600, 600)

Location 3

(450, 450)

Location 2

(450, 150)

Location 1

(150, 150)

(0, 0) (600, 0)

� FIGURE 26.9
Layout for Example 3.
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Alternative 2 (n � 1): With just one tool crib (in Location 2) to service the entire area shown
in Fig. 26.9, the derivation of E(T) is a little more complicated than it is for the basic travel-
time model. The first step is to relabel Location 2 as the original (0, 0) for an (x, y) coordi-
nate system, so that 450 would be subtracted from the first coordinates shown and 150 would
be subtracted from the second coordinates. The probability density function for X is then ob-
tained by dividing the height for each possible value of X � x by the total area (so that the
area under the probability density function curve equals 1), as given in Fig. 26.10a. Combin-
ing the values for x and �x then yields the probability distribution of |X| shown in Fig. 26.10b.

Hence,

E{|X|} � �450

0
x f|X|(x) dx

� �150

0
x ��

2
1
25
�� dx � �450

150
x ��

9
1
00
��dx

� �
1
4
5
5
0
0

2

� � �
450

1

2

,8
–
0
1
0
502

� � 150.

We suggest that you now try the same approach (using the width of the area rather
than the height) to derive E{|Y|}. You will find that the probability distribution of Y is
identical to that for |X|, so E{|Y|} � 150. As a result,

E(T) � �
15,

2
000
� (150 � 150)

� 0.04 hr.

Alternative 3 (n � 2): With tool cribs in just Locations 1 and 3, the areas assigned to them
would be divided by a line segment between (300, 300) and (600, 0) in Fig. 26.9. Notice
that the two areas and their tool cribs are located symmetrically with respect to this line
segment. Therefore, E(T) is the same for both, so we shall derive it just for the tool crib
in Location 1. (You might try it for the other tool crib for practice—see Prob. 26.5-3.)

Proceeding just as for Alternative 2, relabel Location 1 as the origin (0, 0) for an (x, y)
coordinate system, so that 150 would be subtracted from all coordinates shown in Fig. 26.9.
This relabeling leads directly to the probability density function of X, and then of |X|, shown
in Fig. 26.11. As a result,

26-18 CHAPTER 26 THE APPLICATION OF QUEUEING THEORY

1
450

1
900fX(x)

−450 −150 x x

(a)

0 150

1
225

1
900

450

fX(x)

(b)

0 150

� FIGURE 26.10
Probability density functions
of (a) X and (b) |X| for a tool
crib at Location 2 of 
Fig. 26.9 under Alternative 2
(no other tool cribs).
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E{|X|} � �
2
1
25
� �150

0
x dx � �

3
1
00
� �450

150 �1 – �
45

x
0

�� x dx

� �
2
1
25
� ��

x
2

2

��0

150

� �
3
1
00
� ��

x
2

2

� – �
1,

x
3

3

50
��

450

150

� �
2
1
25
� �

15
2
02

� � �
3
1
00
� ��45

2
02

� – �
1
4
,
5
3
0
5

3

0
�� – �

3
1
00
� ��15

2
02

� – �
1
1
,
5
3
0
5

3

0
��

� 133�
1
3

�.

Next, the probability density function of Y is obtained by using the width of the area
assigned to the tool crib at Location 1 for each possible value of Y � y and then dividing
by the size of the area, as given in Fig. 26.12a. This result then yields the uniform distri-
bution of |Y | shown in Fig. 26.12b. Thus,

E{|Y |} � �
1
1
50
� �150

0
y dy

� 75.
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x

1
225

1
450

450

fX(x)

(b)

0 150

1
300

x
450

1 − 
1

450fX(x)

−150 x

(a)

0 150 450

1
300

x
450

1 − 
� FIGURE 26.11
Probability density functions
of (a) X and (b) |X| for a tool
crib at Location 1 of 
Fig. 26.9 under Alternative 3
(the only other tool crib is at
Location 3).

1
450

1
225fY (y)

−150

(a)

0 150

1
300

y
450

1 − 

y

fY(y)

(b)

1
150

0 150 y

� FIGURE 26.12
Probability density functions
of (a) Y and (b) |Y| for a tool
crib at Location 1 of 
Fig. 26.9 under Alternative 3
(the only other tool crib is at
Location 3).
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Consequently,

E(T ) � �
15,

2
000
� (133�

1
3

� � 75)

� 0.0278 hr.

Applying Model 3: Because E(T ) now has been evaluated for the three alternatives under
consideration, the stage is set for using model 3 from Sec. 18.4 to choose among these
alternatives. Most of the data required for this model are given in Sec. 26.1, namely,

� � 120 per hour, Cf � $16 per hour,
Cs � $20 per hour,

�p � 120 per hour, Ct � $48 per hour,

where the M/M/s model given in Sec. 17.6 is used to calculate L and so on. In addition,
the end of Sec. 26.3 gives E(WC) � 48L in dollars per hour. Therefore,

E(TC) � n�(16 � 20s) � 48L � �
12
n
0

� 48E(T)�.

The resulting calculation of E(TC) for various s values for each n is given in Table 26.4,
which indicates that the overall minimum E(TC) of $295.20 per hour is obtained by hav-
ing three tool cribs (so � � 40 for each), with one clerk at each tool crib.

� 26.6 CONCLUSIONS

� TABLE 26.4 Calculation of E(TC), in dollars per hour for Example 3

n � s L E(T ) Cf � Css E(WC) �CtE(T ) E(TC)

1 120 1 � 0.0400 $36 � $230.40 �
1 120 2 1.333 0.0400 $56 $64.00 $230.40 $350.40
1 120 3 1.044 0.0400 $76 $50.11 $230.40 $356.51

2 60 1 1.000 0.0278 $36 $48.00 $ 80.00 $328.00
2 60 2 0.534 0.0278 $56 $25.63 $ 80.00 $323.26

3 40 1 0.500 0.0200 $36 $24.00 $ 38.40 $295.20
3 40 2 0.344 0.0200 $56 $16.51 $ 38.40 $332.73

This chapter has discussed the application of queueing theory for designing queueing sys-
tems. Every individual problem has its own special characteristics, so no standard proce-
dure can be prescribed to fit every situation. Therefore, the emphasis has been on introducing
fundamental considerations and approaches that can be adapted to most cases. We have fo-
cused on three particularly common decision variables (s, �, and �) as a vehicle for intro-
ducing and illustrating these concepts. However, there are many other possible decision
variables (e.g., the size of a waiting room for a queueing system) and many more compli-
cated situations (e.g., designing a priority queueing system) that can also be analyzed in a
similar way.

The time required to travel to and from a service facility sometimes is an important
consideration. A rather general approach to evaluating expected travel time has been in-
troduced by applying it to some relatively simple cases. However, once again, many more
complicated situations can also be analyzed quite similarly. We have discussed the
incorporation of travel-time information into the overall analysis only in the context of
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To the left of each of the following problems (or their parts), we
have inserted a T whenever one of the templates for this chapter
(and Chap. 17) can be useful.

26.2-1. For each kind of queueing system listed in Prob. 17.3-1,
briefly describe the nature of the cost of service and the cost of
waiting that would need to be considered in designing the system.

26.3-1. Suppose that a queueing system fits the M/M/1 model de-
scribed in Sec. 17.6, with � � 2 and � � 4. Evaluate the expected
waiting cost per unit time E(WC) for this system when its waiting-
cost function has the form

(a) g(N ) � 10N � 2N2.
(b) h(� ) � 25� � �3.

26.3-2. Follow the instructions of Prob. 26.3-1 for the following
waiting-cost functions.

(a) g(N ) � �
(b) h(� ) � � for 0 
 � 
 1

for � � 1.
�
�2

for N � 0, 1, 2
for N � 3, 4, 5
for N � 5.

10N
6N2

N3

PROBLEMS 26-21

determining the number of service facilities to provide when customers must travel to the
nearest facility. But travel-time models also can be very useful when the servers must
travel to the customer from the service facility (e.g., fire trucks and ambulances), as well
as in other contexts.

Another useful area for the application of queueing theory is the development of poli-
cies for controlling queueing systems, e.g., for dynamically adjusting the number of servers
or the service rate to compensate for changes in the number of customers in the system.
Research is being conducted in this area.

Queueing theory has proved to be a very useful tool, and we anticipate that its use
will continue to grow as recognition of the many guises of queueing systems grows.
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26.4-1. A certain queueing system has a Poisson input, with a
mean arrival rate of 4 customers per hour. The service-time distri-
bution is exponential, with a mean of 0.2 hour. The marginal cost
of providing each server is $20 per hour, where it is estimated that
the cost that is incurred by having each customer idle (i.e., in the
queueing system) is $120 per hour for the first customer and $180
per hour for each additional customer. Determine the number of
servers that should be assigned to the system to minimize the ex-
pected total cost per hour. [Hint: Express E(WC) in terms of L, P0,
and �, and then use Figs. 17.6 and 17.7.]

26.4-2. Reconsider Prob. 17.6-9. The total compensation for the
new employee would be $8 per hour, which is just half that for the
cashier. It is estimated that the grocery store incurs lost profit due
to lost future business of $0.08 for each minute that each customer
has to wait (including service time). The manager now wants to
determine on an expected total cost basis whether it would be
worthwhile to hire the new person.
(a) Which decision model presented in Sec. 26.4 applies to this

problem? Why?
(b) Use this model to determine whether to continue the status quo

or to adopt the proposal.

26.4-3. The Southern Railroad Company has been subcontracting
for the painting of its railroad cars as needed. However, manage-
ment has decided that the company can save money by doing this
work itself. A decision now needs to be made to choose between
two alternative ways of doing this.

Alternative 1 is to provide two paint shops, where painting is
done by hand (one car at a time in each shop), for a total hourly
cost of $70. The painting time for a car would be 6 hours. Alter-
native 2 is to provide one spray shop involving an hourly cost of
$100. In this case, the painting time for a car (again done one at a
time) would be 3 hours. For both alternatives, the cars arrive ac-
cording to a Poisson process with a mean rate of 1 every 5 hours.
The cost of idle time per car is $100 per hour.
(a) Use Fig. 17.9 to estimate L, Lq, W, and Wq for Alternative 1.
(b) Find these same measures of performance for Alternative 2.
(c) Determine and compare the expected total cost per hour for

these alternatives.

26.4-4. The production of tractors at the Jim Buck Company in-
volves producing several subassemblies and then using an assem-
bly line to assemble the subassemblies and other parts into finished
tractors. Approximately three tractors per day are produced in this
way. An in-process inspection station is used to inspect the sub-
assemblies before they enter the assembly line. At present there are
two inspectors at the station, and they work together to inspect each
subassembly. The inspection time has an exponential distribution,
with a mean of 15 minutes. The cost of providing this inspection
system is $40 per hour.

A proposal has been made to streamline the inspection proce-
dure so that it can be handled by only one inspector. This inspector
would begin by visually inspecting the exterior of the subassembly,
and she would then use new efficient equipment to complete the in-
spection. Although this process with just one inspector would slightly

increase the mean of the distribution of inspection times from
15 minutes to 16 minutes, it also would reduce the variance
of this distribution to only 40 percent of its current value.

The subassemblies arrive at the inspection station according
to a Poisson process at a mean rate of 3 per hour. The cost of hav-
ing the subassemblies wait at the inspection station (thereby in-
creasing in-process inventory and possibly disrupting subsequent
production) is estimated to be $20 per hour for each subassembly.

Management now needs to make a decision about whether to
continue the status quo or adopt the proposal.
T (a) Find the main measures of performance—L, Lq, W, Wq—for

the current queueing system.
(b) Repeat part (a) for the proposed queueing system.
(c) What conclusions can you draw about what management should

do from the results in parts (a) and (b)?
(d) Determine and compare the expected total cost per hour for the

status quo and the proposal.

26.4-5. The car rental company, Try Harder, has been subcon-
tracting for the maintenance of its cars in St. Louis. However, due
to long delays in getting its cars back, the company has decided to
open its own maintenance shop to do this work more quickly. This
shop will operate 42 hours per week.

Alternative 1 is to hire two mechanics (at a cost of $1,500 per
week each), so that two cars can be worked on at a time. The time
required by a mechanic to service a car has an Erlang distribution,
with a mean of 5 hours and a shape parameter of k � 8.

Alternative 2 is to hire just one mechanic (for $1,500 per
week) but to provide some additional special equipment (at a cap-
italized cost of $1,250 per week) to speed up the work. In this case,
the maintenance work on each car is done in two stages, where the
time required for each stage has an Erlang distribution with the
shape parameter k � 4, where the mean is 2 hours for the first stage
and 1 hour for the second stage.

For both alternatives, the cars arrive according to a Poisson
process at a mean rate of 0.3 car per hour (during work hours).
The company estimates that its net lost revenue due to having its
cars unavailable for rental is $150 per week per car.
(a) Use Fig. 17.11 to estimate L, Lq, W, and Wq for alternative 1.
(b) Find these same measures of performance for alternative 2.
(c) Determine and compare the expected total cost per week for

these alternatives.

26.4-6. A certain small car-wash business is currently being ana-
lyzed to see if costs can be reduced. Customers arrive according
to a Poisson process at a mean rate of 15 per hour, and only one
car can be washed at a time. At present the time required to wash
a car has an exponential distribution, with a mean of 4 minutes. It
also has been noticed that if there are already 4 cars waiting (in-
cluding the one being washed), then any additional arriving cus-
tomers leave and take their business elsewhere. The lost incre-
mental profit from each such lost customer is $6.

Two proposals have been made. Proposal 1 is to add certain
equipment, at a capitalized cost of $6 per hour, which would re-
duce the expected washing time to 3 minutes. In addition, each ar-
riving customer would be given a guarantee that if she had to wait
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longer than �
1
2

� hour (according to a time slip she receives upon ar-
rival) before her car is ready, then she receives a free car wash (at
a marginal cost of $4 for the company). This guarantee would be
well posted and advertised, so it is believed that no arriving cus-
tomers would be lost.

Proposal 2 is to obtain the most advanced equipment avail-
able, at an increased cost of $20 per hour, and each car would be
sent through two cycles of the process in succession. The time re-
quired for a cycle has an exponential distribution, with a mean of
1 minute, so total expected washing time would be 2 minutes. Be-
cause of the increased speed and effectiveness, it is believed that
essentially no arriving customers would be lost.

The owner also feels that because of the loss of customer
goodwill (and consequent lost future business) when customers
have to wait, a cost of $0.20 for each minute that a customer has
to wait before her car wash begins should be included in the analy-
sis of all alternatives.

Evaluate the expected total cost per hour E(TC) of the status
quo, proposal 1, and proposal 2 to determine which one should be
chosen.

26.4-7. The Seabuck and Roper Company has a large warehouse
in southern California to store its inventory of goods until they are
needed by the company’s many furniture stores in that area. A sin-
gle crew with four members is used to unload and/or load each
truck that arrives at the loading dock of the warehouse. Manage-
ment currently is downsizing to cut costs, so a decision needs to
be made about the future size of this crew.

Trucks arrive at the loading dock according to a Poisson
process at a mean rate of 1 per hour. The time required by a crew
to unload and/or load a truck has an exponential distribution (re-
gardless of crew size). The mean of this distribution with the four-
member crew is 15 minutes. If the size of the crew were to be
changed, it is estimated that the mean service rate of the crew (now
� � 4 customers per hour) would be proportional to its size.

The cost of providing each member of the crew is $20 per
hour. The cost that is attributable to having a truck not in use (i.e.,
a truck standing at the loading dock) is estimated to be $30 per
hour.
(a) Identify the customers and servers for this queueing system.

How many servers does it currently have?
T (b) Use the appropriate Excel template to find the various mea-

sures of performance for this queueing system with four
members on the crew. (Set t � 1 hour in the Excel template
for the waiting-time probabilities.)

T (c) Repeat (b) with three members.
T (d) Repeat part (b) with two members.
(e) Should a one-member crew also be considered? Explain.
(f) Given the previous results, which crew size do you think man-

agement should choose?
(g) Use the cost figures to determine which crew size would min-

imize the expected total cost per hour.
(h) Assume now that the mean service rate of the crew is propor-

tional to the square root of its size. What should the size be to
minimize expected total cost per hour?

26.4-8. Trucks arrive at a warehouse according to a Poisson
process with a mean rate of 4 per hour. Only one truck can be
loaded at a time. The time required to load a truck has an expo-
nential distribution with a mean of 10/n minutes, where n is the
number of loaders (n � 1, 2, 3, . . .). The costs are (i) $18 per hour
for each loader and (ii) $20 per hour for each truck being loaded
or waiting in line to be loaded. Determine the number of loaders
that minimizes the expected hourly cost.

26.4-9. A company’s machines break down according to a Pois-
son process at a mean rate of 3 per hour. Nonproductive time on
any machine costs the company $60 per hour. The company em-
ploys a maintenance person who repairs machines at a mean rate
of � machines per hour (when continuously busy) if the company
pays that person a wage of $5� per hour. The repair time has an
exponential distribution.

Determine the hourly wage that minimizes the company’s to-
tal expected cost.

26.4-10. Jake’s Machine Shop contains a grinder for sharpening
the machine cutting tools. A decision must now be made on the
speed at which to set the grinder.

The grinding time required by a machine operator to sharpen
the cutting tool has an exponential distribution, where the mean
1/� can be set at 0.5 minute, 1 minute, or 1.5 minutes, depend-
ing upon the speed of the grinder. The running and maintenance
costs go up rapidly with the speed of the grinder, so the esti-
mated cost per minute is $1.60 for providing a mean of 0.5
minute, $0.40 for a mean of 1.0 minute, and $0.20 for a mean
of 1.5 minutes.

The machine operators arrive randomly to sharpen their tools
at a mean rate of 1 every 2 minutes. The estimated cost of an op-
erator being away from his or her machine to the grinder is $0.80
per minute.
T (a) Obtain the various measures of performance for this queue-

ing system for each of the three alternative speeds for the
grinder. (Set t � 5 minutes in the Excel template for the wait-
ing time probabilities.)

(b) Use the cost figures to determine which grinder speed mini-
mizes the expected total cost per minute.

26.4-11. Consider the special case of model 2 where (1) any 
� � � /s is feasible and (2) both f (�) and the waiting-cost func-
tion are linear functions, so that

E(TC) � Crs� � CwL,

where Cr is the marginal cost per unit time for each unit of a server’s
mean service rate and Cw is the cost of waiting per unit time for
each customer. The optimal solution is s � 1 (by the optimality of
a single-server result), and

� � � � 	

for any queueing system fitting the M/M/1 model presented in 
Sec. 17.6.

Show that this � is indeed optimal for the M/M/1 model.

�Cw�
Cr
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26.4-12. Consider a harbor with a single dock for unloading ships.
The ships arrive according to a Poisson process at a mean rate of
� ships per week, and the service-time distribution is exponential
with a mean rate of � unloadings per week. Assume that harbor
facilities are owned by the shipping company, so that the objective
is to balance the cost associated with idle ships with the cost of
running the dock. The shipping company has no control over the
arrival rate � (that is, � is fixed); however, by changing the size of
the unloading crew, and so on, the shipping company can adjust
the value of � as desired.

Suppose that the expected cost per unit time of running the
unloading dock is D�. The waiting cost for each idle ship is some
constant (C) times the square of the total waiting time (including
loading time). The shipping company wishes to adjust � so that
the expected total cost (including the waiting cost for idle ships)
per unit time is minimized. Derive this optimal value of � in terms
of D and C.

26.4-13. Consider a queueing system with two types of cus-
tomers. Type 1 customers arrive according to a Poisson process
with a mean rate of 5 per hour. Type 2 customers also arrive ac-
cording to a Poisson process with a mean rate of 5 per hour. The
system has two servers, and both serve both types of customers.
For types 1 and 2, service times have an exponential distribution
with a mean of 10 minutes. Service is provided on a first-come-
first-served basis.

Management now wants you to compare this system’s design
of having both servers serve both types of customers with the al-
ternative design of having one server serve just type 1 customers
and the other server serve just type 2 customers. Assume that this
alternative design would not change the probability distribution of
service times.
(a) Without doing any calculations, indicate which design would

give a smaller expected total number of customers in the sys-
tem. What result are you using to draw this conclusion?

T (b) Verify your conclusion in part (a) by finding the expected
total number of customers in the system under the original
design and then under the alternative design.

26.4-14. Reconsider Prob. 17.6-31.
(a) Formulate part (a) to fit as closely as possible a special case

of one of the decision models presented in Sec. 18.4. (Do not
solve.)

(b) Describe Alternatives 2 and 3 in queueing theory terms, in-
cluding their relationship (if any) to the decision models pre-
sented in Sec. 26.4. Briefly indicate why, in comparison with
Alternative 1, each of these other alternatives might decrease
the total number of operators (thereby increasing their utiliza-
tion) needed to achieve the required production rate. Also point
out any dangers that might prevent this decrease.

26.4-15. Consider the formulation of the County Hospital emer-
gency room problem as a preemptive priority queueing system, as
presented in Sec. 17.8. Suppose that the following inputted costs
are assigned to making patients wait (excluding treatment time):

$10 per hour for stable cases, $1,000 per hour for serious cases,
and $100,000 per hour for critical cases. The cost associated with
having an additional doctor on duty would be $40 per hour. Re-
ferring to Table 17.3, determine on an expected-total-cost basis
whether there should be one or two doctors on duty.

26.5-1. Consider a factory whose floor area is a square with 600
feet on each side. Suppose that one service facility of a certain kind
is provided in the center of the factory. The employees are dis-
tributed uniformly throughout the factory, and they walk to and
from the facility at an average speed of 3 miles per hour along a
system of orthogonal aisles.

Find the expected travel time E(T) per arrival.

26.5-2. A certain large shop doing light fabrication work uses a
single central storage facility (dispatch station) for material in in-
process storage. The typical procedure is that each employee per-
sonally delivers his finished work (by hand, tote box, or hand cart)
and receives new work and materials at the facility. Although this
procedure worked well in earlier years when the shop was smaller,
it appears that it may now be advisable to divide the shop into two
semi-independent parts, with a separate storage facility for each
one. You have been assigned the job of comparing the use of two
facilities and of one facility from a cost standpoint.

The factory has the shape of a rectangle 150 by 100 yards.
Thus, by letting 1 yard be the unit of distance, the (x, y) coordi-
nates of the corners are (0, 0), (150, 0), (150, 100), and (0, 100).
With this coordinate system, the existing facility is located at (50,
50), and the location available for the second facility is (100, 50).

Each facility would be operated by a single clerk. The time
required by a clerk to service a caller has an exponential distri-
bution, with a mean of 2 minutes. Employees arrive at the pre-
sent facility according to a Poisson input process at a mean rate
of 24 per hour. The employees are rather uniformly distributed
throughout the shop, and if the second facility were installed,
each employee would normally use the nearer of the two facili-
ties. Employees walk at an average speed of about 5,000 yards
per hour. All aisles are parallel to the outer walls of the shop. The
net cost of providing each facility is estimated to be about $20
per hour, plus $15 per hour for the clerk. The estimated total cost
of an employee being idled by traveling or waiting at the facil-
ity is $25 per hour.

Given the preceding cost factors, which alternative minimizes
the expected total cost?

26.5-3. Consider Alternative 3 (tool cribs in Locations 1 and 3)
for the example illustrated in Fig. 26.9. Derive E(T) for the tool
crib in Location 3 by using the probability density functions of X
and Y directly for this tool crib.

26.5-4. Suppose that the calling population for a particular ser-
vice facility is uniformly distributed over each area shown, where
the service facility is located at (0, 0). Making the same as-
sumptions as in Sec. 26.5, derive the expected round-trip travel
time per arrival E(T) in terms of the average velocity v and the
distance r.
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26.5-5. A job shop is being laid out in a square area with 600 feet
on a side, and one of the decisions to be made is the number of
facilities for the storage and shipping of final inventory. The cap-
italized cost associated with providing each facility would be
$10/hour. There are just four potential locations available for these
facilities, one in the middle of each of the four sides of the square
area as shown in the figure.

The loads to be moved to a storage and shipping facility would
be distributed uniformly throughout the shop area and they become
available according to a Poisson process at a mean rate of 90 per
hour. Each time a load becomes available, an appropriate materials-
handling vehicle would be sent from the nearest facility to pick it
up (with an expected loading time of 3 minutes) and bring it there,
where the cost would be $40/hour for time spent in traveling, load-
ing, and waiting to be unloaded. The vehicles would travel at a speed
of 20,000 feet per hour along a system of orthogonal aisles parallel
to the sides of the shop area.

Another decision to be made is the number of men (m) to pro-
vide at each storage and shipping facility for unloading an arriv-
ing vehicles. These m men would work together on each vehicle,
and the time required to unload it would have an exponential
distribution, with a mean of 2/m minutes. The cost of providing
each man is $15/hour.

Determine the number of facilities and the value of m at each
that will minimize expected total cost per hour.
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(−r, −r)

(−r, r)

(0, 0)

(r, 2r)

(r, −2r)
(5r, −2r)

(5r, 2r)

(0, 0)

(−r, 3r)

(−3r, r)

(−3r, −r) (3r, −r)

(−r, −3r) (r, −3r)

(r, 3r)

(3r, r)

(a)

(b)

(−r, −2r)

(−r, 0)
(0, 0)

(0, r)

(r, −2r)

(r, r)

(2r, −r)

(2r, 0)

(c)

(d)

(−2r, r)

(0, 3r)

(0, r)

(0, 0)

(−4r, 3r)
(−2r, 3r)

(−4r, −r)

(0, −3r)

(0, −r)

(2r, −3r)

(2r, 3r)
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