
Random Search Algorithms

Zelda B. Zabinsky∗

April 5, 2009

Abstract

Random search algorithms are useful for many ill-structured global optimization
problems with continuous and/or discrete variables. Typically random search algo-
rithms sacrifice a guarantee of optimality for finding a good solution quickly with
convergence results in probability. Random search algorithms include simulated an-
nealing, tabu search, genetic algorithms, evolutionary programming, particle swarm
optimization, ant colony optimization, cross-entropy, stochastic approximation, multi-
start and clustering algorithms, to name a few. They may be categorized as global
(exploration) versus local (exploitation) search, or instance-based versus model-based.
However, one feature these methods share is the use of probability in determining
their iterative procedures. This article provides an overview of these random search
algorithms, with a probabilistic view that ties them together.

A random search algorithm refers to an algorithm that uses some kind of randomness
or probability (typically in the form of a pseudo-random number generator) in the defi-
nition of the method, and in the literature, may be called a Monte Carlo method or a
stochastic algorithm. The term metaheuristic is also commonly associated with random
search algorithms. Simulated annealing, tabu search, genetic algorithms, evolutionary pro-
gramming, particle swarm optimization, ant colony optimization, cross-entropy, stochastic
approximation, multi-start, clustering algorithms, and other random search methods are be-
ing widely applied to continuous and discrete global optimization problems, see, for example,
[7, 8, 24, 45, 47, 64, 67, 73]. Random search algorithms are useful for ill-structured global
optimization problems, where the objective function may be nonconvex, nondifferentiable,
and possibly discontinuous over a continuous, discrete, or mixed continuous-discrete domain.
A global optimization problem with continuous variables may contain several local optima
or stationary points. A problem with discrete variables falls into the category of combi-
natorial optimization and is often typified by the Traveling Salesperson Problem (TSP). A
combination of continuous and discrete variables arises in many complex systems including
engineering design problems, scheduling and sequencing problems, and other applications in
biological and economic systems.

The problem of designing algorithms that obtain global optimal solutions is very difficult
when there is no overriding structure that indicates whether a local solution is indeed a global

∗Department of Industrial and Systems Engineering, University of Washington, Seattle, WA, 98195–2650,
USA, zelda@u.washington.edu



solution. In contrast to deterministic methods (such as branch and bound, interval analysis,
and tunnelling methods [27, 28, 45]), which typically guarantee asymptotic convergence to
the optimum, random search algorithms ensure convergence in probability. The tradeoff is
in terms of computational effort. Random search algorithms are popular because they can
provide a relatively good solution quickly and easily.

Random search methods have been shown to have a potential to solve large-scale problems
efficiently in a way that is not possible for deterministic algorithms. Whereas it is known
that a deterministic method for global optimization is NP-hard [69], there is evidence that a
stochastic algorithm can be executed in polynomial time, on the average. For instance, Dyer
and Frieze [21, 22] showed that estimating the volume of a convex body takes an exponential
number of function evaluations for any deterministic algorithm, but if one is willing to accept
a weaker claim of being correct with an estimate that has a high probability of being correct,
then a stochastic algorithm can provide such an estimate in polynomial time.

Another advantage of random search methods is that they are relatively easy to imple-
ment on complex problems with “black-box” function evaluations. Because the methods
typically only rely on function evaluations, rather than gradient and Hessian information,
they can be coded quickly, and applied to a broad class of global optimization problems. A
disadvantage of these methods is that they are currently customized to each specific prob-
lem largely through trial and error. A common experience is that random search algorithms
perform well and are “robust” in the sense that they give useful information quickly for
ill-structured global optimization problems.

Different types of categorizations have been suggested for random search algorithms.
Schoen [57] provides a classification of a two-phase method, where one phase is a global search
phase and the other is a local search phase. An example of a two-phase method is multi-start,
where a local search algorithm is initiated from a starting point that is globally, typically
uniformly, distributed. Often the local phase in multi-start is a deterministic gradient search
algorithm, although researchers have experimented with using simulated annealing in the
local phase of multi-start. The global phase can be viewed as an exploration phase aimed at
exploring the entire feasible region, while the local phase can be viewed as an exploitation
phase aimed at exploiting local information (e.g. gradient or nearest neighbor information).

Zlochin [77] categorizes random search algorithms as instance-based or model-based,
where instance-based methods generate new candidate points based on the current point
or population of points, and model-based methods rely on an explicit sampling distribution
and update parameters of the probability distribution. Examples of instance-based algo-
rithms include simulated annealing, genetic algorithms, and tabu search, whereas examples
of model-based algorithms include ant colony optimization, stochastic gradient search, and
the cross-entropy method.

To understand the differences between random search algorithms, we concentrate on the
procedures of generating new candidate points, and updating the collection of points main-
tained. The next section describes generating and updating procedures for several random
search algorithms. Even though instance-based methods may use heuristics to generate and
update points, they do implicitly induce a sampling distribution. Abstracting the random
search algorithms by a sequence of sampling distributions (whether implicit or explicit) pro-
vides a means to understand the performance of the algorithms. In Section 2 we analyze
the performance of Pure Random Search, Pure Adaptive Search and Annealing Adaptive

2



Search by investigating their sampling distributions. We discuss model-based methods in the
context of their explicit sampling distribution in Section 3. We conclude in Section 4 with
a meta-control framework to adapt algorithm parameters affecting sampling distributions.
We hope this overview serves to assist researchers in using random search algorithms and
developing better methods in the future.

1 Generic Random Search and Specific Algorithms

The general global optimization problem (P ) used here is defined as,

(P ) min
x∈S

f(x)

where x is a vector of n decision variables, S is an n-dimensional feasible region and assumed
to be nonempty, and f is a real-valued function defined over S. The goal is to find a value
for x contained in S that minimizes f . The objective function may be an oracle, or black-
box function, in the sense that an explicit mathematical expression is not required but a
numerical value for f must be returned for an input value of x. The feasible set S may be
represented by a system of nonlinear equations, such as gj(x) ≤ 0 for j = 1, . . . ,m, or by
a membership function that simply returns whether or not a given x is in S. Notice that
the feasible region may include both continuous and discrete variables. Denote the global
optimal solution to (P ) by (x∗, y∗) where

x∗ = arg min
x∈S

f(x) and y∗ = f(x∗) = min
x∈S

f(x).

Random search algorithms are also frequently applied to stochastic optimization problems
(also known as simulation-optimization) where the objective function and constraints involve
randomness, but in this article we assume that the objective and membership functions in
(P ) are deterministic.

In order to ensure a global optimum exists, we need to assume some regularity conditions.
If (P ) is a continuous problem and the feasible set S is nonempty and compact, then the
Weierstrass theorem from classical analysis guarantees the existence of a global solution [39].
If (P ) is a discrete problem and the feasible set S is nonempty and finite, a global solution
exists. The existence of a global optimum can be guaranteed under slightly more general
conditions. Note that the existence of a unique minimum at x∗ is not required. If there are
multiple optimal minima, let x∗ be an arbitrary fixed global minimum.

In order to describe random search algorithms on continuous and/or discrete domains,
it is necessary to assume some concept of neighborhood. In Euclidean space (real or integer
valued variables), the notion of neighborhood is typically defined by a ball of radius δ,
δ > 0, of points that are within a (Euclidean) distance δ of a point x ∈ S. However, the
distance between points could be associated with the algorithm, rather than the definition
of the problem. For example, the TSP in combinatorial optimization has several possible
neighborhood structures (e.g. one-city swap, two-city swap) that are integrally associated
with the search algorithm rather than the statement of the problem. Even for problems with
a continuous domain, the neighborhood associated with an algorithm that samples within a

3



fixed radius of its current point is local as compared to an algorithm that samples broadly
over the entire feasible region.

We describe a generic random search algorithm by a sequence of iterates {Xk} on iteration
k = 0, 1, . . . which may depend on previous points and algorithmic parameters. The current
iterate Xk may represent a single point, or a collection of points, to include population-
based algorithms. The iterates are also capitalized to denote that they are random variables,
reflecting the probabilistic nature of the random search algorithm.

Generic Random Search Algorithm

Step 0. Initialize algorithm parameters Θ0, initial points X0 ⊂ S and iteration index k = 0.

Step 1. Generate a collection of candidate points Vk+1 ⊂ S according to a specific generator
and associated sampling distribution.

Step 2. Update Xk+1 based on the candidate points Vk+1, previous iterates and algorithmic
parameters. Also update algorithm parameters Θk+1.

Step 3. If a stopping criterion is met, stop. Otherwise increment k and return to Step 1.

This generic random search algorithm depends on two basic procedures, the generator in
Step 1 that produces candidate points, and the update procedure in Step 2. We first discuss
some examples for the generator procedure.

Single-point Generators Many random search algorithms maintain and generate a sin-
gle point at each iteration. For these single-point generators, the candidate point Vk+1 is
generated based on a combination of the current point and previous points. A common
method to generate a candidate point is to take a step size in a vector direction, called a
direction-step paradigm in [47], or also known as step size algorithms. Step 1 of a step size
algorithm can be expressed by

Vk+1 = Xk + SkDk

where the candidate point is generated by taking a step from the current point Xk of length Sk

in a specified direction Dk on iteration k. In continuous problems, the direction of movement
Dk may be motivated by gradient information, and the step length may be the result of a
line search. Quasi-Newton methods take advantage of an approximation of the Hessian to
provide a search direction. In the basic method of stochastic approximation, also referred to
as the Robbins-Monroe algorithm, the step length is referred to as the “gain” (see [64] for
a good discussion). If the step direction is closely related to the gradient, as in stochastic
gradient search, then local convergence may be proven under certain conditions, however
other variations must be introduced to escape local minima and find the global minimum.

As an alternative, a direction Dk that does not use any local information and is generated
according to a uniform distribution on a hypersphere has been investigated. A collection
of step size algorithms, including [44, 48, 49, 58, 59, 63, 75], obtain a direction vector by
sampling from a uniform distribution on a unit hypersphere. The method of choosing the
step size may also be randomly generated, and may shrink or expand depending on the

4



success of previously sampled points. It is interesting that several of these step size random
search algorithms report experiencing computation that is linear in dimension.

The algorithm Improving Hit-and-Run (IHR) also generates a direction uniformly on a
hypersphere, and generates a step size according to a uniform distribution on the feasible
portion of the line segment in direction Dk [75]. This simple generator is motivated by
convergence properties of a Markov chain Monte Carlo sampler called Hit-and-Run to a target
distribution [5, 6, 38, 62]. The Hit-and-Run generator coupled with an update procedure
has been used in several simulated annealing algorithms [52, 53, 54]. The update procedure
in Improving Hit-and-Run is simply to only accept improving points. Even though this is a
straightforward random search algorithm, its expected performance on a class of spherical
programs is polynomial O(n5/2) in dimension [75].

Examples of generators on discrete domains include nearest neighbor or local search,
ball walk, k-city swap for TSP, and more recently, Very Large-Scale Neighborhood Search
(VLSN) [2]. Classical Markov chains such as the nearest neighbor random walk or the
coordinate direction random walk can get trapped in isolated regions of the domain. A
variation of Hit-and-Run has been proven to converge to an arbitrary target distribution
over an arbitrary subset S of an integer hyper-rectangle [4]. An extension of Hit-and-Run to
mixed continuous/integer domains using a pattern generator has recently been embedded in
IHR for global optimization [40]. The generator in tabu search is known for its restriction
on neighborhoods - it uses a local neighborhood but prevents points from being generated
that have been recently visited [24, 25].

Multiple-point Generators Population-based random search algorithms use a collection
of current points to generate another collection of candidate points. Many of these algorithms
are motivated by biological processes, and include genetic algorithms, evolutionary program-
ming, particle swarm optimization and ant colony optimization. The concept behind genetic
algorithms and evolutionary programming [3, 13, 33] is to produce “off-spring” of the current
population with parameters related to reproduction (e.g. genetic cross-over). Particle swarm
optimization [30, 31] is based on the social behavior of birds and schools of fish, communi-
cating to find food. Once an individual in the group finds a food source (associated with an
objective function value), it informs the others. While initially the individuals of the group
behave independently, they eventually communicate and move collectively towards one of
the found sources of food. The individuals, or particles in the swarm, are typically modeled
by position and velocity, which are updated based on the success of the other particles in
the group. Ant colony optimization [20] is also considered a swarm intelligence, where the
population of ants are moving individually, but communicate through a pheromone that
provides feedback as to successful locations.

Another multiple-point generator that uses a population of points is differential evolu-
tion [66] which uses a weighted difference between two population vectors to generate a third
vector. It is similar to the particle swarm generator because no explicit probability distribu-
tion is used, but an implicit empirical distribution is created through the interaction of the
points. The generator procedure is just telling part of the story. The update procedure also
influences the resulting probability distribution underlying the random search method.

5



Update Procedure After a candidate point is generated, Step 2 of the generic random
search algorithm specifies a procedure to update the current point and algorithm parameters.
Algorithms that are strictly improving have a simple procedure, update the current point
only if the candidate point is improving,

Xk+1 =

{
Vk+1 if f(Vk+1) < f(Xk)
Xk otherwise.

This type of improving algorithm may get trapped in a local optimum if the neighborhood,
or procedure for generating candidate points is too restricted. One remedy is to sample a
large neighborhood, as in VLSN or to draw from the entire feasible set. An example of
this simple acceptance procedure is IHR, however its generator has a positive probability
of sampling anywhere in the bounded feasible region, and so it converges in probability to
the global optimum. Another possibility is to accept non-improving points, as in simulated
annealing.

In simulated annealing [1, 32, 41], the update procedure is often called the Metropolis
criterion, and the candidate point is accepted with a probability that reflects a Boltzmann
distribution,

Xk+1 =

{
Vk+1 with probability min

{
1, exp

(
f(Xk)−f(Vk+1)

Tk

)}
Xk otherwise.

Notice that improving points are accepted with probability one, and the probability of ac-
cepting a worse point decreases as the temperature parameter cools, i.e. decreases to zero.
The update of the temperature parameter, called the cooling schedule, has been studied in
the literature [12, 23, 26, 36, 52, 60]. Typically the temperature parameter decreases mono-
tonically, however recent research on dynamically heating and cooling the temperature in an
Interacting Particle Algorithm [43] is discussed later in this article.

The update procedure for genetic algorithms and evolutionary programming is called the
selection criterion. A straightforward scheme is to rank the population of points based on
objective function value (also referred to as the fitness function), and select the top percentile
of points to use in reproduction and recombination. However experience has shown that some
diversity should be maintained to prevent premature convergence to a local optimum. The
elitist strategy subdivides the population into three categories: the elite (best) solutions,
the immigrant solutions (added to maintain diversity), and the crossover solutions [47].
Computational experience indicates that the population size impacts performance; if it is too
small, the algorithm has difficulty finding the global optimum, and if it is too large, then it is
inefficient and essentially pure random search. An effective population size for a particular
problem is usually found through experimentation. Researchers have used Markov chain
analysis to analyze the behavior, such as the expected waiting time, of genetic algorithms
[14, 34].

Multi-start and Clustering Algorithms Algorithms may modify their generating and
updating procedures per iteration. Consider multi-start; on one iteration a candidate point
is generated according to a global sampling distribution on S, but the next iteration a local

6



search sampling distribution is used. Different combinations of algorithms can be created,
such as generating uniformly distributed points in the global phase that initiate simulated
annealing in the local phase, or use simulated annealing in the global search phase to initiate
stochastic gradient search or nearest neighbor local searches.

An inefficiency in multi-start is that the same local optimum may be repeatedly discovered
from many different starting points. This has motivated clustering methods where clusters
are formed (often grown around a seed point) to predict whether a starting point is likely to
lead to a new local optimum or one that has already been discovered. Then local searches
are only initiated at promising candidate points [57, 67]. A related idea has led to linkage
methods, which “link” points in the sample and essentially view clusters as trees, instead of
spherical or ellipsoidal clusters. The well known linkage method called Multi Level Single
Linkage [50, 51] and several variants including Random Linkage [37] are summarized in [57].

More recently, a multi-start heuristic for OptQuest/NLP, has been designed to operate
on mixed integer nonlinear problems where the functions are differentiable with respect to
the continuous variables [68]. They use scatter search (related to evolutionary programming)
in the global search phase, and use filtering instead of clustering to decide when to initiate
a local search. The nested partitioning method [61] is based on a partitioning of the feasible
region that can be viewed as the global phase, coupled with local random search within the
subregions.

Convergence in Probability Solis and Wets [63] provide a convergence proof, in proba-
bility, to the global minimum for general step size algorithms with conditions on the method
of generating the step length and direction. Essentially, as long as the generator does not
consistently ignore any region, then the algorithm will converge with probability one. An-
other convergence proof due to Bélisle [5] says that, even if the generator of an algorithm
cannot reach any point in the domain in one iteration, if there is a means such as an accep-
tance probability to allow the algorithm to reach any point in a finite number of iterations,
then the algorithm still converges with probability one to the global optimum. Stephens
and Baritompa [65] go on to prove that an algorithm must either sample the entire region or
use global information regarding the structure of the problem to provide convergence results.
Examples of global information are bounds on the function, a Lipschitz constant, information
on the level sets, number of local optima, functional form, and the global optimum itself.
They conclude that using “global optimization heuristics is often far more practical than
running general algorithms until the mathematically proven stopping criteria are satisfied”
[65, page 587].

The generating and updating procedures for random search algorithms can be viewed as
Markov chain Monte Carlo samplers, and then the algorithms can be interpreted as implicitly
or explicitly sampling from a sequence of distributions. Markov chain theory has been
applied to the analysis of several versions of these algorithms, including simulated annealing
and genetic algorithms, to prove convergence. We next analyze the performance of three
algorithms with explicit sampling distributions: pure random search, pure adaptive search,
and annealing adaptive search, to gain insight into the distributions we could approximate
with generating and updating procedures.

7



2 Performance of Pure Random Search, Pure Adap-

tive Search and Annealing Adaptive Search

The simplest and most obvious random search method is a “blind search” as discussed in [64],
or called pure random search in [73]. Pure random search was first defined in 1958 by Brooks
[9], and discussed later in [18, 19]. Pure random search (PRS) samples repeatedly from the
feasible region S, typically according to a uniform sampling distribution. In the context of
the generic random search algorithm, each candidate point is generated independently from
a uniform distribution on S, and Xk+1 is updated only if the candidate point is improving.
It can be shown that pure random search converges to within an ε distance of the global
optimum with probability one [63, 64, 73]. Pure random search is often the global phase in
multi-start and clustering algorithms.

Even though pure random search converges in probability, it will take a long time. In
order to describe the performance of PRS, we use E[N(y∗ + ε)], the expected number of
iterations until a point within ε distance of the global minimum is first sampled, as a measure
of computational complexity. For PRS, an iteration generates one point uniformly on S and
performs exactly one function evaluation, so this captures the majority of the computational
effort. The random variable N(y), the number of iterations until a point is first sampled
with an objective function value of y or less, has a geometric distribution [17], where the
probability of a “success” is p(y), the probability of generating a point in the level set S(y),
where S(y) = {x ∈ S : f(x) ≤ y}. Then, the expected number of iterations until a point is
first sampled within ε distance of the optimum is

E[N(y∗ + ε)] = 1/p(y∗ + ε).

This relationship supports the natural intuition that, as the target region close to the global
optimum gets small (i.e., p(y∗ + ε) gets small), the expected number of iterations gets large
(inversely proportional). The probability of failure to achieve y∗ + ε after k iterations is
1− p(y∗ + ε)k. The variance of the number of iterations until a point first lands in S(y) is

Var(N(y)) =
1− p(y)

p(y)2
.

This supports numerical observations that pure random search (and other random search
methods) experiences large variation; as the probability p(y) decreases, the variance of N(y)
increases.

To gain insight into the performance of PRS, consider the TSP with N cities and sub-
sequently (N − 1)! possible points in the domain. If there is a unique minimum, then
p(y∗) = 1/(N − 1)! and the expected number of PRS iterations to first sample the minimum
is (N − 1)!, which explodes in N .

To illustrate the performance of PRS on a continuous domain problem, consider a global
optimization problem where the domain S is an n-dimensional ball of radius 1, and the area
within ε distance of the global optimum is a ball of radius ε, for 0 < ε ≤ 1. Using a uniform
sampling distribution on this problem, p(y∗+ ε) = εn for 0 < ε ≤ 1 and the expected number
of iterations until a sample point falls within the ε-ball is (1/ε)n, an exponential function of
dimension.

8



To expand this example, it is shown in [73] that the expected number of PRS iterations
on a global optimization problem where the objective function satisfies a Lipschitz condition
with constant K is also exponential in the dimension of the problem,

E[N(y∗ + ε)] = (K/ε)n.

All random search algorithms are meant to improve upon PRS. However, the “No Free
Lunch” theorems in Wolpert and Macready [70] show that, in essence, no single algorithm
can improve on any other when averaged across all possible problems. As a consequence of
these theorems, in order to improve upon PRS, we must either restrict the class of problems,
have some prior information, or adapt the algorithm as properties of a specific problem are
observed.

In contrast to pure random search, where each sample is independent and identically dis-
tributed, we next consider pure adaptive search, where each sample depends on the one im-
mediately before it. Pure adaptive search (PAS) was introduced in [46] for convex programs
and later analyzed for global optimization problems with Lipschitz continuous functions in
[74] and for finite domains in [76]. It was generalized as hesitant adaptive search in [11, 72].
Pure adaptive search, by definition, generates a candidate point uniformly in the subset of
the domain that is strictly improving, Vk+1 ∈ S(f(Xk)) = {x : x ∈ S and f(x) < f(Xk)}.
It is an idealized algorithm to show potential performance for a random search algorithm.
Whereas sampling from a uniform distribution in PRS over S is typically very easy (for ex-
ample, if S is a hyperrectangle), sampling from a uniform distribution in PAS over S(f(Xk))
is very difficult in general. However, the analysis shows the value of being able to find points
in the improving level set; the number of iterations of PAS is an exponential improvement
over the number of iterations in PRS (Theorem 2.2, [73]). Additionally, for Lipschitz contin-
uous objective functions, the expected number of iterations of pure adaptive search is linear
in dimension (Theorem 2.9, [73]), with an analogous result for finite domains (Corollary
2.9, [73]). The linearity result for pure adaptive search implies that adapting the search to
sample improving points is very powerful.

The idealistic linear property of PAS has inspired the design of several algorithms with
the goal of approximating PAS, including Improving Hit-and-Run [75] which uses Hit-and-
Run as a Markov chain Monte Carlo sampler embedded in an optimization context, and
Grover Adaptive Search [10] which uses quantum computing for optimization.

We now describe one more idealistic algorithm, Annealing Adaptive Search, which is a
way to abstract simulated annealing. Annealing adaptive search (AAS) differs from PAS
in that the candidate points are generated from the entire feasible set S according to a
Boltzmann distribution parameterized by temperature, whereas the sampling distribution in
PAS only has positive support on nested level sets of S. The name annealing adaptive search
(suggested in [71]) is used because the algorithm assumes points can be generated from exact
Boltzmann distributions, which is a model of simulated annealing. The purpose of the AAS
analysis is to gain understanding of simulated annealing and other stochastic algorithms.

The record values of AAS, first analyzed in [53], stochastically dominate those of PAS
and hence inherit the ideal linear complexity of PAS. The number of sample points (including
non-improving points) of AAS is also shown to be linear on average under certain conditions
on the cooling schedule for the temperature parameter. The analysis motivated a cooling

9



schedule for simulated annealing which maintains a linear complexity in expected number of
sample points on a class of (Lipschitz) objective functions over both continuous and discrete
domains [60].

3 Cross-entropy and other Model-based Methods

In keeping with our generic random search algorithm, we now relate model-based methods to
the generating and updating procedures. We view instance-based methods as emphasizing
generating new points and subsequently updating them using algorithm parameters Θk, but
now model-based methods change the emphasis to updating the algorithm parameters Θk

and subsequently using them to generate new points. We contrast the two methods by
comparing them to an idealized algorithm, such as PAS or AAS.

Consider PAS or AAS, where we want to sample points according to a sequence of
probability density functions hk(x). In PAS the sampling distribution hk(x) is uniform on
the level set associated with the best objective function value on the kth iteration. In AAS the
sampling distribution hk(x) is Boltzmann with a temperature parameter associated with the
kth iteration. Simulated annealing can be interpreted as a Markov chain sampling approach
to approximate a series of AAS Boltzmann distributions, and IHR can be interpreted as a
Markov chain sampling approach to approximate a series of PAS uniform distributions on
level sets.

The approach of model-based methods is to approximate a sequence of target distribu-
tions hk(x) using the concept of importance sampling or sequential importance sampling
[55, 56, 77]. In [77], model-based methods are shown to include ant colony optimization,
stochastic gradient search, cross-entropy and estimation of distribution methods. The model
reference adaptive search (MRAS) algorithm introduced in [29] also incorporates the idea
of importance sampling and uses the information provided by the samples to update the
parameters so the new samplings are biased toward the global optima.

Because sampling directly from hk(x) is difficult, the idea is to use a simple parametrized
probability density function g(x, Θ). Choices for g(x, Θ) typically come from the natural
exponential family, which include Gaussian, Poisson, binomial, geometric, and other multi-
variate forms [29, 55]. For example, when the Gaussian probability density function is used,
then Θ consists of the mean vector and the covariance matrix. We now seek a parameter
Θk+1 that provides a good approximation to hk(x). This leads to the problem of minimizing
the Kullback-Leibler divergence between g(x, Θ) and hk(x), that is

Θk+1 = arg inf
Θ

∫
S

ln

(
hk(x)

g(x, Θ)

)
hk(x)dx.

The name of the cross-entropy method comes from this idea because the Kullback-Leibler
divergence is also referred to as the cross-entropy between two probability density functions.

Now a new probability density function hk+1(x) is created by “tilting” hk(x) to bias it
towards the improving regions in S using a performance function G(x), as follows

hk+1(x) =
Gyk+1

(x)hk(x)∫
S

Gyk+1
(x)hk(x)dx

.

10



The performance function G(x) is assumed to be positive and relates to the objective function
f(x). One alternative for a performance function is Gyk+1

(x) = exp (f(x)) IS(yk+1)(x) where

IS(yk+1)(x) =

{
1 if x ∈ S(yk+1)
0 otherwise

is the indicator of the level set S(yk+1). A sample of candidate points drawn from the
sampling distribution g(x, Θk+1) is used to determine a level set threshold yk+1. In [29], yk+1

is estimated as a specified quantile of f(x) with respect to hk(x).
Global convergence properties of these model-based methods appear in [29, 55, 77] with

compelling numerical results.

4 Meta-control of Random Search Algorithms

To complete this article, we mention recent work on meta-control of random search algo-
rithms. A meta-control methodology for prescribing parameters of a deterministic optimiza-
tion algorithm was introduced in [35]. Extending the idea to random search algorithms,
in [43] a meta-control methodology is derived to control the temperature parameter in the
interacting particle algorithm.

The interacting particle algorithm in [42, 43] is based on Feynman-Kac systems in statis-
tical physics [15, 16] and combines the ideas of simulated annealing with population-based
algorithms. As such, it has a temperature parameter that influences the sampling distri-
bution through acceptance/rejection. Instead of choosing a cooling schedule a priori, the
meta-control methodology dynamically determines the temperature parameter by adapting
it based on observed sample points. An optimal control problem that controls the evolution
of the probability density function of the particles with the temperature parameter is defined
to make the algorithm’s search process satisfy specified performance criteria. The criteria
in [43] include the expected objective function value of the particles, the spread of the par-
ticles, and the algorithm running time. Numerical results indicate improved performance
by allowing heating and cooling of the temperature parameter through the meta-control
methodology [43]. The meta-control methodology shares a common goal with cross-entropy
and model-based methods; to provide a means to dynamically adapt algorithm parameters
based on observed values in a closed-loop with feedback.

Random search algorithms provide a useful tool for practitioners to solve ill-structured
global optimization problems. Combinations of proposed algorithms, with theoretical anal-
yses, will lead to improved algorithms in the future.

References

[1] Aarts, E., and Korst, J. (1989), Simulated Annealing and Boltzmann Machines - a
Stochastic Approach to Combinatorial Optimization and Neural Computers, Wiley, New
York.

11



[2] Ahuja, R. K., Ergun, O., Orlin, J. B., and Punnen, A. P. (2002), “A Survey of Very
Large-Scale Neighborhood Search Techniques,” Discrete Applied Mathematics, 123, 75-
102.

[3] Bäck, T., Fogel, D., and Michalewicz, Z. (1997), Handbook of Evolutionary Computation,
IOP Publishing and Oxford University Press, New York, NY.

[4] Baumert, S., Ghate, A., Kiatsupaibul, S., Shen, Y., Smith, R. L., and Zabinsky, Z. B.,
Discrete Hit-and-Run for Generating Multivariate Distributions over Arbitrary Finite
Subsets of a Lattice, forthcoming in Operations Research, 2009.

[5] Bélisle, C. J. P. (1992), “Convergence Theorems for a Class of Simulated Annealing
Algorithms on Rd,” J. Applied Probability, 29, 885-895.

[6] Bélisle, C. J. P., Romeijn, H. E., and Smith, R. L. (1993), “Hit-and-Run Algorithms
for Generating Multivariate Distributions,” Mathematics of Operations Research, 18,
255-266.

[7] Blum, C., and Roli, A., (2003) “Metaheuristics in Combinatorial Optimization:
Overview and Conceptual Comparison,” ACM Computing Surveys, 35(3), 268-308.

[8] Boender, C.G.E, and Romeijn, H.E. (1995), “Stochastic Methods,” in Handbook of
Global Optimization, edited by R. Horst and P. M. Pardalos, Kluwer Academic Pub-
lishers, Netherlands, 829-869.

[9] Brooks, S. H. (1958), “A Discussion of Random Methods for Seeking Maxima,” Opera-
tions Research, 6, 244-251.

[10] Bulger, D., Baritompa, W. P., and Wood, G. R. (2003) “Implementing Pure Adap-
tive Search with Grover’s Quantum Algorithm,” Journal of Optimization Theory and
Applications, 116, 517-529.

[11] Bulger, D. W., and Wood, G. R. (1998), “Hesitant Adaptive Search for Global Opti-
mization,” Mathematical Programming, 81, 89-102.

[12] Cohn, H., and Fielding, M. (1999), “Simulated annealing: searching for an optimal
temperature schedule,” SIAM Journal on Optimization, 9(3), 779-802.

[13] Davis, L. (1991), Handbook of Genetic Algorithms, Van Nostrand Reinhord, New York.

[14] De Jong, K. A., Spears, W. M., and Gordon, D.F. (1995), “Using Markov Chains to
Analyze GAFOs,” in Foundations of Genetic Algorithms 3, edited by D. Whitley, and
M. Vose, Morgan Kaufmann, San Francisco, 115-137.

[15] Del Moral, P. (2004), Feynman-Kac Formulae: Genealogical and Interacting Particle
Systems with Applications, Springer, New York.

[16] Del Moral, P., and Miclo, L. (1999), “On the convergence and applications of generalized
simulated annealing,” SIAM Journal of Control and Optimization, 37(4), 1222-1250.

12



[17] Devore, J. L. (1995), Probability and Statistics for Engineering and the Sciences, Fourth
Edition, Wadsworth, Inc. Belmont, CA.

[18] Dixon, L. C. W., and Szegö, G. P. (1975), Towards Global Optimization, North-Holland,
Amsterdam.

[19] Dixon, L. C. W., and Szegö, G. P. (1978), Towards Global Optimization 2, North-
Holland, Amsterdam.

[20] Dorigo, M., and Stützle, T. (2004), Ant colony optimization, MIT Press, Cambridge,
MA.

[21] Dyer, M. E., and Frieze, A. M. (1991), “Computing the Volume of Convex Bodies: A
Case Where Randomness Provably Helps,” Proceedings of Symposia in Applied Mathe-
matics, 44, 123-169.

[22] Dyer, M., Frieze, A., and Kannan, R. (1991), “A random polynomial time algorithm
for approximating the volume of convex bodies,” Journal of the ACM, 38, 1-17.

[23] Fielding, M. (2000), “Simulated annealing with an optimal fixed temperature,” SIAM
Journal on Optimization, 11(2), 289-307.

[24] Glover, F., and Kochenberger, G. A. (2003), Handbook of Metaheuristics, International
series in operations research & management science, 57, Kluwer Academic Publishers,
Boston.

[25] Glover, F., and Laguna, M. (1993), “Tabu Search,” in Modern Heuristic Techniques for
Combinatorial Problems, edited by C. R. Reeves, Halsted Press, New York, 70-150.

[26] Hajek, B. (1988), “Cooling schedules for optimal annealing,” Math. Oper. Res., 13,
311-329.

[27] Horst, R., and Hoang, T. (1996), Global Optimization: Deterministic Approaches, Third
Edition, Springer-Verlag, Berlin.

[28] Horst, R., and Pardalos, P. M. (1995), Handbook of Global Optimization, Kluwer Aca-
demic Publishers, Netherlands.

[29] Hu, J., Fu, M. C., and Marcus, S. I. (2007) “A Model Reference Adaptive Search Method
for Global Optimization,” Operations Research, 55, 549-568.

[30] Kennedy, J., and Eberhart, R. C. (1995), “Particle Swarm Optimization,” Proceedings
of IEEE international conference on Neural Networks, 4, 1942-1948.

[31] Kennedy, J., Eberhart, R. C. and Shi, Y. (2001), Swarm Intelligence, Morgan Kaufmann
Publishers, San Fransisco, CA.

[32] Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P. (1983), “Optimization by Simulated
Annealing,” Science, 20, 13 May, 671-680.

13



[33] Koehler, G. J. (1997), “New Directions in Genetic Algorithm Theory,” Annals of Op-
erations Research, 75, 49-68.

[34] Koehler, G. J. (1999), “Computing Simple GA Expected Waiting Times,” Proceedings
of the Genetic and Evolutionary Computation Conference, 795, 1999.

[35] Kohn, W., Zabinsky, Z. B., and Brayman, V. (2006), “Meta-Control of an optimization
algorithm,” Journal of Global Optimization, 34(2), 293-316.

[36] Locatelli, M. (2000), “Convergence of a simulated annealing algorithm for continuous
global optimization,” Journal of Global Optimization, 18, 219-234.

[37] Locatelli, M. and Schoen, F. (1999) “Random Linkage: a Family of Acceptance / Rejec-
tion Algorithms for Global Optimization,” Mathematical Programming, 85(2), 379-396.

[38] Lovász, L. (1999), “Hit-and-Run Mixes Fast,” Mathematical Programming, 86, 443-461.

[39] Luenberger, D. G. (1984), Linear and Nonlinear Programming, Second Edition,
Addison-Wesley, Massachusetts.

[40] Mete, H. O., Shen, Y., Zabinsky, Z. B., Kiatsupaibul, S., and Smith, R. L., “Pattern
Discrete and Mixed Hit-and-Run for Global Optimization,” Technical Report, University
of Washington, Seattle, WA, 2009.

[41] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953), “Equa-
tion of State Calculations by Fast Computing Machines,” Journal of Chemical Physics,
21, 1087-1090.

[42] Molvalioglu, O., Zabinsky, Z. B., and Kohn, W. (2007), “Multi-particle simulated an-
nealing,” in Models and Algorithms for Global Optimization, edited by A. Törn, J.
Zilinskas, and A. Zilinskas, 215-222, Springer, New York.

[43] Molvalioglu, O., Zabinsky, Z. B., and Kohn, W. (2009) “The interacting-particle algo-
rithm with dynamic heating and cooling,” Journal of Global Optimization, 43, 329-356.

[44] Mutseniyeks, V. A., and Rastrigin, L. (1964), “Extremal Control of Continuous Multi-
parameter Systems by the Method of Random Search,” Engineering Cybernetics, 1,
82-90.

[45] Pardalos, P. M., and Romeijn, H. E. (2002), Handbook of Global Optimization, Volume
2, Kluwer Academic Publishers, Netherlands.

[46] Patel, N. R., Smith, R. L., and Zabinsky, Z. B. (1988), “Pure adaptive search in Monte
Carlo optimization,” Mathematical Programming, 4, 317-328.

[47] Rardin, R. L. (1998), Optimization in Operations Research, Prentice Hall, New Jersey.

[48] Rastrigin, L. A. (1960), “Extremal Control by the Method of Random Scanning,” Au-
tomation and Remote Control 21, 891-896.

14



[49] Rastrigin, L. A. (1963), “The Convergence of the Random Method in the Extremal
Control of a Many-parameter System,” Automation and Remote Control 24, 1337-1342.

[50] Rinnooy Kan, A. H. G., and Timmer, G. T. (1987), “Stochastic Global Optimization
Methods; part I: Clustering Methods,” Mathematical Programming, 37, 27-56.

[51] Rinnooy Kan, A. H. G., and Timmer, G. T. (1987), “Stochastic Global Optimization
Methods; part II: Multi Level Methods, Mathematical Programming, 37, 57-78.

[52] Romeijn, H. E., and Smith, R. L. (1994a), “Simulated Annealing for Constrained Global
Optimization,” Journal of Global Optimization, 5, 101-126.

[53] Romeijn, H. E., and Smith, R. L. (1994b), “Simulated Annealing and Adaptive Search
in Global Optimization,” Probability in the Engineering and Informational Sciences, 8,
571-590.

[54] Romeijn, H. E., Zabinsky, Z. B., Graesser, D. L., and Neogi, S. (1999), “New Reflection
Generator for Simulated Annealing in Mixed-Integer/Continuous Global Optimization,”
Journal of Optimization Theory and Applications, 101(2), 403-427.

[55] Rubinstein, R. Y., and Kroese, D. P. (2004), The Cross-Entropy Method: A Unified Ap-
proach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning,
Springer, New York.

[56] Rubinstein, R. Y., and Kroese, D. P. (2008), Simulation and the Monte Carlo Method,
Second Edition, John Wiley and Sons, New Jersey.

[57] Schoen, F. (2002) “Two-phase Methods for Global Optimization,” in Handbook of Global
Optimization, Volume 2, edited by P. M. Pardalos, and H. E. Romeijn, Kluwer Academic
Publishers, Netherlands, 151-177.

[58] Schrack, G., and Borowski, N. (1972), “An experimental comparison of three random
searches,” in Numerical Methods For Nonlinear Optimization, edited by F. Lootsma,
Academic Press, London, 137-147.

[59] Schrack, G., and Choit, M. (1976), “Optimized Relative Step Size Random Searches,”
Mathematical Programming 10, 270-276.

[60] Shen, Y., Kiatsupaibul, S., Zabinsky, Z. B., and Smith, R. L. (2007), “An Analytically
Derived Cooling Schedule for Simulated Annealing,” Journal of Global Optimization,
38, 333-365.

[61] Shi, L., and Ólafsson, S. (2000), “Nested Partitions Method for Global Optimization,”
Operations Research, 48(3), 390-407.

[62] Smith, R. L. (1984), “Efficient Monte Carlo procedures for generating points uniformly
distributed over bounded regions,” Operations Research, 32, 1296-1308.

[63] Solis, F. J., and Wets, R. J.-B. (1981) “Minimization by Random Search Techniques,”
Mathematics of Operations Research, 6, 19-30.

15



[64] Spall, J. C. (2003), Introduction to Stochastic Search and Optimization: Estimation,
Simulation and Control, Wiley, Hoboken, New Jersey.

[65] Stephens, C. P., and Baritompa, W. P. (1998), “Global Optimization Requires Global
Information,” Journal of Optimization Theory and Applications, 96(3), 575-588.

[66] Storn, R., and Price, K. (1997). “Differential Evolution - A Simple and Efficient Heuris-
tic for Global Optimization over Continuous Spaces,” Journal of Global Optimization,
11(4), 341-359.

[67] Törn, A., and Žilinskas, A. (1989), Global Optimization, Springer-Verlag, Germany.

[68] Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., and Marti, R. (2007), “Scatter
Search and Local NLP Solvers: A Multistart Framework for Global Optimization,”
Informs Journal on Computing, 19(3), 328-340.

[69] Vavasis, S. A. (1995), “Complexity Issues in Global Optimization: A Survey,” in Hand-
book of Global Optimization, edited by R. Horst, and P. M. Pardalos, Kluwer Academic
Publishers, Netherlands, 27-41.

[70] Wolpert, D. H., and Macready, W. G. (1997) “No Free Lunch Theorems for Optimiza-
tion,” IEEE Transactions on Evolutionary Computation, 1, 67-82.

[71] Wood, G. R., and Zabinsky, Z. B. (2002), “Stochastic Adaptive Search,” in Handbook
of Global Optimization Volume 2, edited by P. M. Pardalos and H. E. Romeijn, Kluwer
Academic Publishers, Dordrecht, Netherlands, 231-249.

[72] Wood, G. R., Zabinsky, Z. B., and Kristinsdottir, B. P. (2001), “Hesitant adaptive
search: the distribution of the number of iterations to convergence,” Mathematical Pro-
gramming, 89(3), 479-486.

[73] Zabinsky, Z. B. (2003), Stochastic adaptive search for global optimization, Kluwer Aca-
demic Publishers, Boston.

[74] Zabinsky, Z. B., and Smith, R. L. (1992), “Pure Adaptive Search in Global Optimiza-
tion,” Mathematical Programming, 53, 323-338.

[75] Zabinsky, Z. B., Smith, R. L., McDonald, J. F., Romeijn, H. E., and Kaufman, D. E.
(1993), “Improving Hit and Run for Global Optimization,” Journal of Global Optimiza-
tion, 3, 171-192.

[76] Zabinsky, Z. B., Wood, G. R., Steel, M. A., and Baritompa, W. P. (1995), “Pure
Adaptive Search for Finite Global Optimization,” Mathematical Programming, 69, 443-
448.

[77] Zlochin, M., Birattari, M., Meuleau, N., and Dorigo, M. (2004). “Model-Based Search
for Combinatorial Optimization: A Critical Survey,” Annals of Operations Research,
131, 373-395.

16


